首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that mouse gamma F-crystallin sequences -759 to +45, which include the core promoter and two upstream enhancer elements, contain sufficient information for directing gene expression to terminally differentiated fiber cells of the ocular lens. To investigate the role that proximal sequences of the mouse gamma F-crystallin promoter play in the developmental regulation of gene expression, we generated transgenic mice containing the lacZ gene driven by either mouse gamma F-crystallin sequences -171 to +45, which lack functional enhancers, or a hybrid hamster alpha A-/mouse gamma F-crystallin promoter, which contains the hamster alpha A-crystallin enhancer instead of operational gamma F-crystallin enhancers. In situ analysis of lacZ expression in these mice revealed that the mouse gamma F-crystallin promoter segment -171 to +45, which shows low activity in vitro, is able to direct gene expression to the fiber cells in the nucleus of the lens. However, animals expressing gamma 171-lacZ show both a lower level of expression of the lacZ gene and a narrower pattern of staining in the lens nucleus than mice expressing gamma 759-lacZ, which contains the two enhancer elements located between -392 and -278 and -226 to -123.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The 5' flanking regions of the six rat gamma-crystallin genes (gamma A-gamma F) are all capable of conferring lens-specific expression to the bacterial chloramphenicol acetyl transferase (CAT) reporter gene in either transdifferentiating chicken neural retina cells or mouse lens epithelial cells. Deletion mapping of the most active gamma-crystallin promoter region, the gamma D region, showed that at least three elements are required for maximal expression in mouse lens epithelial cells: element(s) located between -200 and -106, a conserved CG rich region around position -75, and a CG stretch around -15. The region between -200 and -106 was dispensable in transdifferentiating chicken neural retina cells, which instead required the region between -106 and -78. The maximal activity of the gamma E and gamma F promoters was also dependent upon the integrity of the conserved CG region located around -75. A synthetic oligonucleotide containing this sequence was capable of lens-specific enhancement of the activity of the tk promoter in transdifferentiating chicken neural retina cells but not in mouse lens epithelial cells. Our results further show that this region may contain a silencer element, active in non-lens tissues, as well.  相似文献   

4.
5.
Lens-specific expression of the delta 1-crystallin gene is governed by an enhancer in the third intron, and the 30-bp-long DC5 fragment was found to be responsible for eliciting the lens-specific activity. Mutational analysis of the DC5 fragment identified two contiguous, interdependent positive elements and a negative element which overlaps the 3'-located positive element. Previously identified ubiquitous factors delta EF1 bound to the negative element and repressed the enhancer activity in nonlens cells. Mutation and cotransfection analyses indicated the existence of an activator which counteracts the action of delta EF1 in lens cells, probably through binding site competition. We also found a group of nuclear factors, collectively called delta EF2, which bound to the 5'-located positive element. delta EF2a and -b were the major species in lens cells, whereas delta EF2c and -d predominated in nonlens cells. These delta EF2 proteins probably cooperate with factors bound to the 3'-located element in activation in lens cells and repression in nonlens cells. delta EF2 proteins also bound to a promoter sequence of the gamma F-crystallin gene, suggesting that delta EF2 proteins are involved in lens-specific regulation of various crystallin classes.  相似文献   

6.
Rat lens nuclear extracts contain a factor that binds to position -57 to -46 of the rat gamma D-crystallin promoter region. This factor protects the sequence 5'-CTGCCAACGCAG-3' in a footprint analysis. Binding to this region is crucial for maximal promoter activity in rat lens cells, but this sequence was unable to act as an enhancer when cloned in front of a heterologous promoter. A region directly upstream from this activating sequence, between position -85 to -67, acts as a strong silencer of promoter activity in non-lens cells. This silencing effect is mediated by trans-acting factor(s). Our data provide evidence for two regulatory elements in rat gamma D-crystallin gene expression, an activating sequence active in lens cells and a silencing sequence active only in non-lens cells. The factor that binds to the activating sequence could be detected only in lens cells and may be a determinant of the lens-specific expression of the gamma-crystallin genes.  相似文献   

7.
While only two gamma-crystallins have been identified in the human eye lens, molecular studies indicate that the human gamma-crystallins are encoded in a multigene family comprising at least seven closely related members. Sequence analysis of five of these genes has suggested that three (gamma 1-2, G3, and G4) are potentially active, while two (G1 psi and G2 psi) correspond to closely related pseudogenes. Here we report on the detailed structure of a sixth gamma-crystallin gene, G5, and our results obtained with transient expression assays to characterize both the promoter activity and translation products of five members of the gene family. We show that 5'-flanking sequences of G1 psi and G2 psi lacked detectable promoter activity, while the corresponding sequences of G3, G4, and G5 were able to direct high levels of expression of the bacterial chloramphenicol acetyltransferase gene in primary lens epithelia, but not in cultures of nonlens origin. Detailed sequence comparisons indicated that active genes contained several conserved sequence tracts 5' of the TATA box which may constitute functional elements of a lens-specific gamma-crystallin promoter. Expression of the gamma-crystallin coding sequences from the human metallothionein IIA promoter in nonlens cells facilitated characterization of the polypeptides encoded by individual gamma-genes and, in future studies, should permit comparison of these proteins with distinct gamma-crystallins in the human lens.  相似文献   

8.
Transgenic mice carrying the diphtheria toxin A gene driven by mouse gamma 2-crystallin promoter sequences manifest microphthalmia due to ablation of fiber cells in the ocular lens. Here we map ablation events in the lens by crossing animals hemizygous for the ablation construct with transgenic mice homozygous for the in situ lacZ reporter gene driven by identical gamma 2-crystallin promoter sequences. By comparing the spatial distribution of lacZ-expressing cells and the profile of gamma-crystallin gene expression in the lenses of normal and microphthalmic offspring, the contributions of specific cell types to lens development were examined. The results suggest that phenotypically and developmentally distinct populations of lens fiber cells are able to contribute to the lens nucleus during organogenesis. We also show that dosage of the transgene and its site of integration influence the extent of ablation. In those mice homozygous for the transgene and completely lacking cells of the lens lineage, we show that the sclera, cornea, and ciliary epithelium are reduced in size but, otherwise, reasonably well formed. In contrast, the anterior chamber, iris, and vitreous body are not discernible while the sensory retina is highly convoluted and extensively fills the vitreous chamber.  相似文献   

9.
10.
The alphaB-crystallin/small heat shock protein gene is expressed very highly in the mouse eye lens and to a lesser extent in many other nonocular tissues, including the heart, skeletal muscle and brain. Previously we showed in transgenic mice that lens-specific alphaB-crystallin promoter activity is directed by a proximal promoter fragment (-164/+44) and that non-lens promoter activity depends on an upstream enhancer (-427/-259) composed of at least 5 cis-control elements. Here we have used truncated alphaB-crystallin promoter-CAT transgenes to test by biphasic CAT assays and/or histochemistry for specific expression in the cornea and lens. Deletion either of 87 bp (-427/-340) from the 5' end of the alphaB-crystallin enhancer or of the whole enhancer (-427/-258) abolished alphaB-crystallin promoter activity in all tissues except the lens and corneal epithelium when examined by the biphasic CAT assay in 4-5-week-old transgenic mice. These truncations also lowered promoter strength in the lens. The -426/+44-CAT, -339/+44-CAT and -164/+44-CAT (previously thought to be lens-specific in transgenic mice) transgenes were all expressed in the 4-6-week-old corneal epithelium when examined histochemically. Immunohistochemical staining confirmed the presence of endogenous alphaB-crystallin in the mature corneal epithelial cells. CAT gene expression driven by the alphaB-crystallin promoter with or without the enhancer was evident in the embryonic and 4-6-week-old lens. By contrast, activity of the alphaB-crystallin promoter/enhancer-CAT transgene was not detectable in the corneal epithelium before birth. Taken together, these results indicate that the intact enhancer of the alphaB-crystallin/small heat shock protein gene is required for promoter activity in all tissues tested except the lens and cornea.  相似文献   

11.
12.
The present experiments show that the single gene for the lens-specific protein alpha A-crystallin of chickens and mice uses a different subset of cis- and trans-acting regulatory elements for expression in transfected embryonic chicken lens epithelial cells. A chicken alpha A-crystallin-chloramphenicol acetyltransferase (CAT) fusion gene required 162 base pairs whereas the murine alpha A-crystallin-CAT fusion gene required only 111 base pairs of 5'-flanking sequences for efficient tissue-specific expression in the transfected chicken lens cells. Gel retardation and competition experiments were performed using embryonic chicken lens nuclear extract and oligodeoxynucleotides identical to the 5'-flanking region of the chicken (-170/-111) and murine (-111/-88 and -88/-55) alpha A-crystallin gene. The results indicated that these homologous promoters use different nuclear factors for function. Methylation interference analysis identified a dyad of symmetry (CTGGTTCCCACCAG) at position -153 to -140 in the chicken alpha A-crystallin promoter which binds one or more lens nuclear factors. Gel mobility shift experiments using nuclear extracts of brain, reticulocytes, and muscle of embryonic chickens or HeLa cells suggested that the factor(s) binding to the chicken alpha A-crystallin gene promoter sequences are not lens specific. Despite differences in the functional and protein-binding properties of the alpha A-crystallin gene promoter of chickens and mice, expression of the chicken alpha A-crystallin-CAT fusion gene in transgenic mice was lens specific, consistent with a common underlying mechanism for expression of the alpha A-crystallin gene in chickens and mice.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Although individual gamma-crystallins from the human eye lens have not been successfully purified and sequenced, most of the genes coding for these lens-specific structural proteins have been cloned and characterized. To investigate the relationship between these genes and the gamma-crystallins of the human lens, we made use of mouse cell lines which contain stably integrated copies of the coding sequences for three of the human gamma-crystallin genes coupled to the human metallothionein IIA promoter. The proteins produced by these hybrid genes in cell culture were detected immunologically and compared by physical characteristics with the gamma-crystallins from the human lens. The protein encoded by the G3 gene showed properties identical to those of the 21,000-molecular-weight gamma-crystallin from 11-month-old lens. The protein isolated from the cells expressing the G4 gene was similar to a 19,000-molecular-weight lens gamma-crystallin, while gene G5 encodes a highly basic gamma-crystallin which may be synthesized in only limited amounts in the human lens. These correlations provide a basis for future investigations on the relationship between putative mutations in human gamma-crystallin genes and altered proteins in hereditary lens cataracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号