首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 925 毫秒
1.
Human cytomegalovirus (HCMV) infects a number of organs and cell types in vivo, leading to the hypothesis that HCMV disease and tissue tropism may be related to specific sequence variants. A potential component of HCMV variant strains is the UL144 open reading frame (ORF), which encodes a homologue of the herpesvirus entry mediator, HveA, a member of the tumor necrosis factor receptor superfamily. Sequence analysis of the UL144 ORF in 45 low-passage clinical isolates demonstrated significant strain-specific variability. In individual isolates, nucleotide substitutions occur at up to 21% of the 531 positions, resulting in approximately the same percentage of substitutions in the predicted 176-amino-acid sequence. Phylogenetic analysis indicated that the nucleotide and amino acid sequences diverge into three major groups. For genotypic comparison, the known hypervariable region encompassing the proteolytic cleavage site of the glycoprotein B (gB) gene was also sequenced. All of the isolates could be typed according to the four known gB groups; however, the gB and UL144 sequence groups appeared to be phylogenetically unlinked. The predicted UL144 product homology with tumor necrosis factor receptor family members, along with the unexpectedly high level of sequence variability of the UL144 ORF, suggests that the predicted product may play a role in HCMV infectivity and subsequent host disease.  相似文献   

2.
3.
4.
Kamil JP  Coen DM 《Journal of virology》2007,81(19):10659-10668
UL97 is a protein kinase encoded by human cytomegalovirus (HCMV) and is an important target for antiviral drugs against this ubiquitous herpesvirus, which is a major cause of life-threatening opportunistic infections in the immunocompromised host. In an effort to better understand the function(s) of UL97 during HCMV replication, a recombinant HCMV, NTAP97, which expresses a tandem affinity purification (TAP) tag at the amino terminus of UL97, was used to obtain UL97 protein complexes from infected cells. pp65 (also known as UL83), the 65-kDa virion tegument phosphoprotein, specifically copurified with UL97 during TAP, as shown by mass spectrometry and Western blot analyses. Reciprocal coimmunoprecipitation experiments using lysates of infected cells also indicated an interaction between UL97 and pp65. Moreover, in a glutathione S-transferase (GST) pull-down experiment, purified GST-pp65 fusion protein specifically bound in vitro-translated UL97, suggesting that UL97 and pp65 do not require other viral proteins to form a complex and may directly interact. Notably, pp65 has been previously reported to form unusual aggregates during viral replication when UL97 is pharmacologically inhibited or genetically ablated, and a pp65 deletion mutant was observed to exhibit modest resistance to a UL97 inhibitor (M. N. Prichard, W. J. Britt, S. L. Daily, C. B. Hartline, and E. R. Kern, J. Virol. 79:15494-15502, 2005). A stable protein-protein interaction between pp65 and UL97 may be relevant to incorporation of these proteins into HCMV particles during virion morphogenesis, with potential implications for immunomodulation by HCMV, and may also be a mechanism by which UL97 is negatively regulated during HCMV replication.  相似文献   

5.
The TRAIL (TNF-related apoptosis inducing ligand) death receptors (DRs) of the tumor necrosis factor receptor superfamily (TNFRSF) can promote apoptosis and regulate antiviral immunity by maintaining immune homeostasis during infection. In turn, human cytomegalovirus (HCMV) expresses immunomodulatory proteins that down-regulate cell surface expression of TNFRSF members as well as poliovirus receptor-related proteins in an effort to inhibit host immune effector pathways that would lead to viral clearance. The UL141 glycoprotein of human cytomegalovirus inhibits host defenses by blocking cell surface expression of TRAIL DRs (by retention in ER) and poliovirus receptor CD155, a nectin-like Ig-fold molecule. Here we show that the immunomodulatory function of HCMV UL141 is associated with its ability to bind diverse proteins, while utilizing at least two distinct binding sites to selectively engage TRAIL DRs or CD155. Binding studies revealed high affinity interaction of UL141 with both TRAIL-R2 and CD155 and low affinity binding to TRAIL-R1. We determined the crystal structure of UL141 bound to TRAIL-R2 at 2.1 Å resolution, which revealed that UL141 forms a homodimer that engages two TRAIL-R2 monomers 90° apart to form a heterotetrameric complex. Our structural and biochemical data reveal that UL141 utilizes its Ig-domain to facilitate non-canonical death receptor interactions while UL141 partially mimics the binding site of TRAIL on TRAIL-R2, which we found to be distinct from that of CD155. Moreover, UL141 also binds to an additional surface patch on TRAIL-R2 that is distinct from the TRAIL binding site. Therefore, the breadth of UL141-mediated effects indicates that HCMV has evolved sophisticated strategies to evade the immune system by modulating multiple effector pathways.  相似文献   

6.
Human cytomegalovirus (HCMV), the β-herpesvirus prototype, has evolved a wide spectrum of mechanisms to counteract host immunity. Among them, HCMV uses cellular captured genes encoding molecules capable of interfering with the original host function or of fulfilling new immunomodulatory tasks. Here, we report on UL7, a novel HCMV heavily glycosylated transmembrane protein, containing an Ig-like domain that exhibits remarkable amino acid similarity to CD229, a cell-surface molecule of the signalling lymphocyte-activation molecule (SLAM) family involved in leukocyte activation. The UL7 Ig-like domain, which is well-preserved in all HCMV strains, structurally resembles the SLAM-family N-terminal Ig-variable domain responsible for the homophilic and heterophilic interactions that trigger signalling. UL7 is transcribed with early-late kinetics during the lytic infectious cycle. Using a mAb generated against the viral protein, we show that it is constitutively shed, through its mucine-like stalk, from the cell-surface. Production of soluble UL7 is enhanced by PMA and reduced by a broad-spectrum metalloproteinase inhibitor. Although UL7 does not hold the ability to interact with CD229 or other SLAM-family members, it shares with them the capacity to mediate adhesion to leukocytes, specifically to monocyte-derived DCs. Furthermore, we demonstrate that UL7 expression attenuates the production of proinflammatory cytokines TNF, IL-8 and IL-6 in DCs and myeloid cell lines. Thus, the ability of UL7 to interfere with cellular proinflammatory responses may contribute to viral persistence. These results enhance our understanding of those HCMV-encoded molecules involved in sustaining the balance between HCMV and the host immune system.  相似文献   

7.
Earlier reports (Y. Kawaguchi, R. Bruni, and B. Roizman, J. Virol. 71:1019-1024, 1997; Y. Kawaguchi, C. Van Sant, and B. Roizman, J. Virol. 72:1731-1736, 1998) showed that herpes simplex virus 1 (HSV-1) infection causes the hyperphosphorylation of translation elongation factor 1delta (EF-1delta) and that the modification of EF-1delta is the consequence of direct phosphorylation by a viral protein kinase encoded by the UL13 gene of HSV-1. The UL13 gene is conserved in members of all herpesvirus subfamilies. Here we report the following. (i) In various mammalian cells, accumulation of the hyperphosphorylated form of EF-1delta is observed after infection with alpha-, beta-, and gammaherpesviruses, including HSV-2, feline herpesvirus 1, pseudorabiesvirus, bovine herpesvirus 1, human cytomegalovirus (HCMV), and equine herpesvirus 2. (ii) In human lung fibroblast cells infected with recombinant HSV-1 lacking the UL13 gene, the hypophosphorylated form of EF-1delta is a minor species, whereas the amount of the hyperphosphorylated form of EF-1delta significantly increases in cells infected with the recombinant HSV-1 in which UL13 had been replaced by HCMV UL97, a homologue of UL13. These results indicate that the posttranslational modification of EF-1delta is conserved herpesvirus function and the UL13 homologues may be responsible for the universal modification of the translation factor.  相似文献   

8.
Human cytomegalovirus (HCMV) is a herpesvirus associated with serious diseases in immunocompromised subjects. The region between ORF UL133 and UL151 from HCMV, named ULb' is frequently deleted in attenuated AD169 and in highly passaged laboratory strains. However, this region is conserved in low-passaged and more virulent HCMV, like the Toledo strain. The UL146 gene, which is located in the ULb' region, encodes a CXC-chemokine analogue. The diversity of UL146 gene was evaluated among fifty-six clinical isolates of HCMV from Japan. Results show that UL146 gene was successfully amplified by the polymerase chain reaction (PCR) in only 17/56 strains (30%), while the success rate for UL145/UL147 gene was 18/56 strains (32%). After DNA sequencing, the 35 amplified strains were classified into 8 groups. When compared, variability of UL146 ranged from 25.1% to 52.9% at the DNA level and from 34.5% to 67% at the amino acid level. Seven groups had the interleukin-8 (IL-8) motif ERL (Glu-Leu-Arg) CXC and one group had only the CXC motif, suggesting the absence of the IL-8 function of UL146. In conclusion, we found that UL146 gene of HCMV is hyper-variable in clinical strains from Japan suggesting the possibility of a different function in each sequence group.  相似文献   

9.
Unique long 16 (UL16) is a viral glycoprotein produced in a host cell infected with human cytomegalovirus (HCMV). It down regulates surface expression of MICB, one of the NKG2D ligands, by forming stable intracellular complexes and retained in the endoplasmic reticulum. Down expression of MICB renders cells less susceptible to NK cell lysis via the NKG2D receptor. Diverse UL16 sequences were identified from different strains of HCMV. MICB is known to be polymorphic. It is not known whether these polymorphisms affect the interactions between these molecules leading to alteration of the immune surveillance of HCMV. The soluble Fc fusion variant UL16 proteins from four laboratory and clinical isolates (AD169, Toledo, PH, and TR) were produced. Four allelic MICB alleles (008, 003, 004, and 00502) were cloned and stable cell lines expressing these MICB alleles were produced. The binding activities of variant UL16 to allelic MICB proteins were determined by flow cytometry. The variants of UL16 proteins did not affect the binding activities to allelic MICB proteins. However, diverse MICB alleles differentially bound UL16. We found that MICB*008 which contains methionine and asparagine at the amino acid positions 98 and 113, respectively, in the alpha 2 domain showed decreased binding activities to UL16 when compared to MICB*003, 004, and MICB*00502 containing isoleucine and aspartic acid, respectively. This finding may imply that MICB*008 is a protective allele and involved in the immune surveillance of HCMV infected patients.  相似文献   

10.
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.  相似文献   

11.
Herpesviruses have evolved numerous strategies to subvert host immune responses so they can coexist with their host species. These viruses 'co-opt' host genes for entry into host cells and then express immunomodulatory genes, including mimics of members of the tumour-necrosis factor (TNF) superfamily, that initiate and alter host-cell signalling pathways. TNF superfamily members have crucial roles in controlling herpesvirus infection by mediating the direct killing of infected cells and by enhancing immune responses. Despite these strong immune responses, herpesviruses persist in a latent form, which suggests a dynamic relationship between the host immune system and the virus that results in a balance between host survival and viral control.  相似文献   

12.
The glycoprotein (g) complex gH/gL represents an essential part of the herpesvirus fusion machinery mediating entry of cell-free virions and cell-associated viral spread. In some herpesviruses additional proteins are associated with gH/gL contributing to the cell tropism of the respective virus. Human cytomegalovirus (HCMV) gH/gL forms complexes with either gO (UL74) or proteins of the UL128-131A gene locus. While a contribution of UL128-131A to endothelial cell tropism is known, the role of gO is less clear. We studied the role of gH/gL-associated proteins in HCMV replication in human foreskin fibroblasts (HFF) and human umbilical vein endothelial cells (HUVEC). Deletions of UL74 alone or in combination with mutations of the UL128-131A gene region were introduced into bacterial artificial chromosome vectors derived from the endotheliotropic strain TB40/E. Deletion of UL74 caused a profound defect regarding virus release from infected HFF and HUVEC. Large numbers of capsids accumulated in the cytoplasm of infected HFF but failed to acquire an envelope. Clear cell type differences were observed in the cell-associated spread of the UL74-defective virus. In HFF, focal growth was severely impaired, whereas it was normal in HUVEC. Deletion of UL131A abolished focal growth in endothelial cells. UL74/UL128-131A dual mutants showed severely impaired reconstitution efficiency. Our data suggest that gO plays a critical role in secondary envelopment and release of cell-free virions independent of the cell type but affects cell-associated growth specifically in HFF, whereas UL128-131A contributes to cell-associated spread in HFF and HUVEC.  相似文献   

13.
14.
The proteins encoded by the UL34 and UL31 genes of herpes simplex virus are conserved among herpesviruses. They form a complex that is essential for the egress of the herpesvirus nucleocapsids from the nucleus. In previous work on the homologous protein complex in murine cytomegalovirus (MCMV), we defined their mutual binding domains. Here, we started to map binding domains within the UL34/UL31 proteins of alpha-, beta-, and gammaherpesviruses and to locate other functional properties. A protein complementation assay (PCA) using the TEM-1 beta-lactamase fragments fused to UL31 and UL34 protein homologues was used to study protein-protein interactions in cells. Wild-type MCMV M50 and M53 provided a strong reaction in the PCA, whereas mutants unable to form a complex did not. The homologous pairs of herpes simplex virus type 1, pseudorabies virus, human cytomegalovirus (HCMV), Epstein-Barr virus (EBV), and murine herpes virus 68 proteins also reacted, with the exception of the EBV proteins. Cross-complementation was found to be positive only within the same herpesvirus subfamily. Moreover, the HCMV homologues rescued replication-defective MCMV genomes lacking one or the other gene. We identified the binding site of M53 for M50 in the first conserved region (CR1) (M. Loetzerich, Z. Ruzsics, and U. H. Koszinowski, J. Virol. 80:73-84). Here we show that the CR1 of all tested UL31 proteins contains the UL34 binding site, and chimeric proteins carrying the subfamily-specific CR1 rescued the ability to cross-complement in the PCA.  相似文献   

15.
16.
Kim Y  Park B  Cho S  Shin J  Cho K  Jun Y  Ahn K 《PLoS pathogens》2008,4(8):e1000123
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses.  相似文献   

17.

Background

Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that typically causes asymptomatic infections in healthy individuals but may lead to serious complications in newborns and immunodeficient individuals. The emergence of drug-resistant strains of HCMV has posed a need for the development of new drugs and treatment strategies. Antisense molecules are promising gene-targeting agents for specific regulation of gene expression. External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. The UL49-deletion BAC of HCMV was significantly defective in growth in human foreskin fibroblasts. Therefore, UL49 gene may serve as a potential target for novel drug development to combat HCMV infection. In this study, DNA-based EGS molecules were synthesized to target the UL49 mRNA of human cytomegalovirus (HCMV).

Results

By cleavage activity assessing in vitro, the EGS aimed to the cleavage site 324 nt downstream from the translational initiation codon of UL49 mRNA (i.e. EGS324) was confirmed be efficient to direct human RNase P to cleave the target mRNA sequence. When EGS324 was exogenously administered into HCMV-infected human foreskin fibroblasts (HFFs), a significant reduction of ~76% in the mRNA and ~80% in the protein expression of UL49 gene, comparing with the cells transfected with control EGSs. Furthermore, a reduction of about 330-fold in HCMV growth were observed in HCMV-infected HFFs treated with the EGS.

Conclusions

These results indicated that UL49 gene was essential for replication of HCMV. Moreover, our study provides evidence that exogenous administration of a DNA-based EGS can be used as a potential therapeutic approach for inhibiting gene expression and replication of a human virus.  相似文献   

18.
19.
Controlled regulation of genomic DNA synthesis is a universally conserved process for all herpesviruses, including human cytomegalovirus (HCMV), and plays a key role in viral pathogenesis, such as persistent infections. HCMV UL105 is believed to encode the helicase of the DNA replication machinery that needs to localize in the nuclei, the site of viral DNA synthesis. No host factors that interact with UL105 have been identified. In this study, we show that UL105 specifically interacts with Snapin, a human protein that is predominantly localized in the cytoplasm and associated with cellular vesicles. UL105 was found to interact with Snapin in both the yeast two-hybrid screen and coimmunoprecipitation experiments in HCMV-infected cells. The nuclear and cytoplasmic levels of UL105 were decreased and increased in cells overexpressing Snapin, respectively, while the levels of UL105 in the nuclei and cytoplasm were increased and decreased in cells in which the expression of Snapin was downregulated with anti-Snapin small interfering RNA (siRNA) molecules, respectively. Furthermore, viral DNA synthesis and progeny production were decreased in cells overexpressing Snapin and increased in the anti-Snapin siRNA-treated cells, respectively. Our results provide the first direct evidence to suggest that Snapin interacts with UL105 and alters its cellular distribution, leading to modulation of viral DNA synthesis and progeny production. Our study further suggests that modulation of the cellular distribution of viral helicase by Snapin may represent a possible mechanism for regulating HCMV genomic DNA synthesis, a key step during herpesvirus lytic and persistent infections.  相似文献   

20.
Many viruses have evolved strategies to either evade or hijack host cell immune programs, as a means of promoting their own reproduction. For example, the human cytomegalovirus (HCMV) immediate-early protein vMIA/UL37ex1 inhibits host cell apoptosis, and its expression during infection aids virus replication. Here it is shown that stable expression of vMIA/UL37ex1 reduces cleavage of the innate immune response-proteins MAVS and RIG-I by caspases during apoptosis. Unexpectedly, it is demonstrated that RIG-I, but not MAVS, is degraded during HCMV infection. This process occurs in a non-apoptotic manner, and provides new evidence that HCMV may have evolved a unique strategy to evade RIG-I-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号