首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planktonic algae submitted to vertical mixing with a short periodicitycommute many times a day from low to high irradiance levels.To study the influence of this light periodicity, two diatoms,Skeletonema coslatum and Nitzschia turgiduloides, were cultivatedunder alternating conditions of 2 h light/2 h dark (2 h/2 h),simulating vertical mixing in the natural environment. Two otherlight regimes were used: continuous light (CL) and alternatecycles of 12 h light/12 h dark (12 h/12 h). Products synthesizedin the dark by S.costmum during 60 s incubation for 2 h/2 hculture or during 5 min for 12 h/12 h culture were determined.They were essentially sugars, malate, aspartate and glyceratefor 2 h/2 h cells and 12 h/12 h cells taken at the beginningof the light period. In contrast, 12 h/12 h cells taken duringthe darkness or in the middle of the light period and set inthe dark synthesized only amino acids. Our results corroborateprevious reports on dark CO2 fixation via phosphoenolpyruvatecarboxykinase (PEPCKase, enzyme allowing the fixation of CO2on PEP and the synthesis of amino acids) with involvement ofa substrate synthesized during the light period, but demonstratethat incorporation also occurs by the C-3 pathway (pathway responsiblefor the major CO2 fixation in the light) in the very early stagesof the dark period. Another important result highlighted bythis study is the appreciable rate of dark fixation: on average6.7, 8.3 and 12.7% of photosynthesis at saturating photon fluxdensity for N.turgiduloides cultivated under 2 h/2 h, CL and12 h/12 h regime respectively and nearly 12% for S.costatumin the 2 h/2 h light regime. Variation of dark fixation wasinvestigated as a function of hour in the two species. Skeletonemacostatum cells submitted to the 2 h/2 h cycle show a constantrate of light-independent assimilation throughout the day. Bycontrast, both N.turgiduloides grown under the 12 h/12 h or2 h/2 h regime and S.costatum cultured under the 12 h/12 h cycleundergo fluctuations in the rate of dark fixation over the light/darkcycle. The mean dark fixation rate is controlled by the lengthof the photoperiod or the frequency of light fluctuations, dependingon species. We argue that this phenomenon must be taken intoconsideration in primary production calculations. Dependingon whether they are synthesized at the beginning or at the endof the light period, products are somewhat different and therate of fixation varies. This leads us to suggest that the pathwayof dark fixation may be regulated by at least two factors: amountof available substrate and enzyme (RuBPCase and PEPCKase) activityand/or amount.  相似文献   

2.
The primary leaves of kidney bean (Phaseolus vulgaris L.) openunder light and close in the dark by the deformation of thepulvinus resulting from diurnal distribution changes of K+,Cl, organic acid (or H+) and NO3. When Rb+ was added as a tracer of K+ to the seedlings throughtheir roots, it was transported to the pulvinus cells duringthe light period but not during the dark period. Transpirationoccurred vigorously in the light but almost stopped in the dark.We concluded that Rb+ absorbed by the roots was carried to thepulvinus by the transpiration stream. Phaseolus vulgaris L., pulvinus, Rb+, diurnal transport transpiration stream  相似文献   

3.
Chlorella cells incubated in the dark longer than 12 hr showedpronounced blue light-induced 14CO2 fixation into aspartate,glutamate, malate and fumarate (blue light effect), whereasthose kept under continuous light showed only a slight bluelight effect, if any. 2) During dark incubation of Chlorellacells, phosphoenolpyruvate carboxylase activity and the capacityfor dark 14CO2 fixation decreased significantly, whereas ribulose-1,5-diphosphatecarboxylase activity and the capacity for photosynthetic 14CO2fixation (measured under illumination of white light at a highlight intensity) did not decrease. 3) In cells preincubatedin the dark, intracellular levels of phosphoenolpyruvate and3-phosphoglycerate determined during illumination with bluelight were practically equal to levels determined during illuminationwith red light. 4) The blue light effect was not observed incells incubated widi chloramphenicol, indicating that blue light-inducedprotein synthesis is involved in the mechanism of the effect. (Received April 9, 1971; )  相似文献   

4.
The technique of measuring chlorophyll concentration in vivo by fluorometric analysis has been adapted to studying the diurnal migration of dino-flagellates in the sea and also in a deep tank (3 m in diameter by 10 m deep). The downward migration of Ceratium furca was followed during a bloom off the California coast. The main band of cells migrated from the upper 2 m to a depth of 5 m about 2 hr after sunset, and was dispersed between 5 and 16 m 4.5 hr after sunset. Cultures of Gonyaulax polyedra and Cachonina niei both migrated to the surface of the deep lank during illumination and migrated downward during darkness at a rate of 1-2 mjhr. The downward migration was observed to begin before the light was turned off, indicating that migration is correlated with a cellular periodicity which is to some extent independent of the light regime. Further evidence for such a periodicity was afforded by observations that C. niei start to migrate up in the water column before start of the light period. Nitrogen-limited cells of G. polyedra showed no diurnal migration, but within 1 day after addition of a nitrogen source they recovered their full migratory ability. Cells of C. niei, however, continued to migrate during 5 days of N-starvation, although they did not concentrate in the upper 1/2 m as did the control cells.  相似文献   

5.
The effects of light quality on the photoperiodic control inthe flowering of a SD duckweed, Lemna perpusilla strain 6746,and a LD duckweed, L. gibba strain G3, were investigated withspecial reference to the interaction between R and B or FR lights. In the diurnal alternation of R or G light and dark periods,L. perpusilla responded as a SDP, but in that of B or FR lightit was almost daylength-indifferent. On the other hand, L. gibbaresponded as a LDP under B, R or FR light, although the criticallight length was altered by the light quality. In the diurnal alternation of R and B or FR light periods containingno dark period, L. perpusilla flowered with the shortening ofthe optimal and critical R light lengths, compared with theplant exposed to that of R light and dark period. The floweringresponse of L. gibba to the R light length showed double peaks,that is, the first peak at the R duration less than 9 hours,and the second at the R duration longer than 9 hours. The firstpeak corresponds to the optimal R light length in L. perpusilla. Under the CL with a mixture of R and B or FR lights, the floweringand frond production were influenced by the intensity ratioof two light given. In both plants, the optimal ratio of B toR or FR to R for the flowering was always greater than thatfor the frond production. It is suggested that the B or FR light interacts with the Rlight in the photoperiodic process in the plants and this interactionbetween the R and B or FR lights should be of importance forobtaining a better understanding of photoperiodism. (Received August 28, 1965; )  相似文献   

6.
A short-day duckweed, Lemna paucicostata 6746, was exposed tocontinuous darkness at 26?C, and the changes in the floral parameters(3) due to far-red and/or red light pulse given at various timesof the dark period were studied. Parameters a (vegetative growth rate) and (flowering ratio)were respectively decreased and increased with a far-red lightpulse given at the outset of the dark period. The decreaseda and the increased remained almost unchanged until the 7thhour, but returned to their initial levels thereafter. The far-redlight actions on a and were reversed by subsequent exposureto red light. Parameter P1 (pre-flower induction period) wasextended by 1 day when far-red and/or red pulse was given atabout the 7th hour of the dark period. A far-jed pulse givenat the outset of the dark period only affected parameter P2(flower induction period). Although the sensitivity of P2 tored light increased with time, its sensitivity to far-red lightremained constant and at about the 7th hour was equally sensitiveto far-red and red lights. Both red and far-red pulses givenlater than the 7th hour were increasingly ineffective on P2.The red/far-red reversibility occurred only for the action onP2 of the far-red pulse applied during the early dark period.Parameter P4 (flower production period) varied rhythmicallyin length with a far-red puke, the maximum shortening and extensionbeing induced by the pulse given at about the 7th and 19th hours,respectively. The sensitivity of P4 to red light also changedrhythmically with an inverse phase angle to the rhythmic responseto farred light, and the far-red and red light actions werereversed respectively by subsequent red and far-red lights. These findings suggested that multiple timing devices includingan hourglass-type clock and a circadian clock are involved induckweed flowering. (Received October 25, 1978; )  相似文献   

7.
Physiological responses to water stress (drought) have beeninvestigated in Umbilicus rupestris (wall pennywort) by comparingcontrol (well-watered) and draughted plants with respect to(i) diurnal fluctuations in the acid content of the leaves,(ii) CO2 exchange patterns and (iii) stomatal conductance. Controlplants show no diurnal fluctuations in acid content, whereasafter 6 d of drought a clear CAM-type pattern (nocturnal acidificationfollowed by deacidification in the light) is observed. In controlplants, the CO2 exchange pattern over a 24 h period is of atypical C-3 ‘square-wave’ type, with extensive CO2uptake in the light and CO2 output in the dark. In droughtedplants the day-time CO2 uptake is confined to a morning ‘burst’,whilst night-time CO2 output is markedly reduced. There is howeverno net noctural uptake of CO2. In control plants, stomatal conductanceis high during the day (especially in the first half of theday) falling to a low level at the onset of darkness, and thenrising slowly through the remainder of the night. In droughtedplants, stomatal conductance is very low, except that thereis morning ‘burst’ of high conductance and a periodduring the night when conductance is higher than in controlplants. These results are discussed in relation to the response of U.rupestris to drought both in laboratory and in field conditions. Umbilicus rupestris, wall pennywort, CO2 exchange, Crassulacean acid metabolism, drought, stomatal conductance, water stress  相似文献   

8.
Flowering (number of flowers) of a short-day duckweed, Lemnapaucicostata 6746, in continuous darkness at 26?C was affectedby a red light pulse in various ways depending on the time ofapplication. A conspicuous inhibition and a slight promotionwere respectively caused by the pulse given at the 7th and 19thhours of the dark period. Of the recently introduced floral parameters (4), a (vegetativegrowth rate) and (flowering ratio) were almost unchanged bythe pulse given at any time. P1 (pre-flower induction period)was extended by one day when the pulse was given at about the7th hour of the dark period. The pulse greatly extended P2 (flowerinduction period) when given at about the 7th hour of the darkperiod. A pulse given earlier or later was increasingly ineffectiveon P2. P4 (flower production period) changed rhythmically (i.e.,was extended or shortened) with the time of the red light pulse,the maximum extension and shortening being induced by the pulsegiven at about the 7th and 19th hours, respectively. Differenttiming mechanisms were suggested as controlling the sensitivitiesto the red light pulse of P1 and P2 or P4. The floral response (number of flowers) vs. the red light pulseapplication time curve was explained in terms of the sum ofthe responses of P2 and P4 to the pulse. Floral parameters P1and P2 were defined more clearly. (Received September 4, 1978; )  相似文献   

9.
Bryophyllum diagremontianum plants grown under light-dark regimeswere exposed to one more cycle of the regime or to continuousdarkness for 24 hr. Photosynthetic O2 evolution by leaf segmentsfrom these plants was investigated in the presence of 15 mMNaHCO3 (CO2-dependent O2 evolution) or in the absence of CO2(malate-dependent O2 evolution). The malate-dependent O2 evolutionserved as an index of the activity of malate decarboxylation.Malate content was respectively 67, 64 and 85 µmoles/g.fwin leaves measured at 7 hr 30 min in light and 6 hr 26 min inthe dark from plants under the light-dark regime (light 12 hr/dark12 hr) and those measured at 6 hr 26 min in the dark from plantsunder the continuous dark regime. The malate- and CO2-dependentphotosynthetic O2 evolutions in the same leaves were 9.7 and22, 0.2 and 17, and 16 and 26 µmoles/g.fw.hr, respectively.Thus, the diurnal change in capacity for malate-dependent O2evolution was relieved by continuous dark treatment. These results suggest that the diurnal change in malate decarboxylationin this crassulacean acid metabolism plant does not occur byan endogenous rhythm. This further indicates lack of an endogenousrhythm for the influx-efflux of malate across the vacuole andin malate decarboxylation enzyme activity. (Received August 1, 1979; )  相似文献   

10.
When seedlings of Phaseolus vulgaris with leaves in the daytimeposition (almost horizontal to the ground) were turned upside-downduring the light period, their leaves moved upward away fromthe ground after about 20 min and ceased moving after about1.5 h. But when seedlings with leaves in the night time position(directed downward) were turned upside-down, their leaves moveddownward toward the ground after about 30 min and stopped movingabout 2 h later. Thus, Phaseolus primary leaves showed positiveor negative geotropic responses that correspohded to the darkor light period. This geotropic response of primary leaves was accompanied bythe redistribution of K+, Cl and NO3- in the laminarpulvinus. These facts suggest that the circadian endogenousclock that is assumed to exist in Phaseolus vulgaris has atleast two regulation echanisms; one which measures time andanother which determines leaf postition in relation to gravityby changing the ion distribution in the pulvinus (Received February 12, 1983; Accepted May 17, 1983)  相似文献   

11.
Conditions and maintenance of growth were chosen so that plantsof Clusia minor L. were obtained which showed the C3- and CAM-modes of CO2-exchange, respectively. C. minor is known to accumulateconsiderable amounts of citric acid in addition to malic acidduring the dark-phase of CAM. 14CO2-pulse-chase experiments were performed with these plants.Patterns of labelling during the pulse and redistribution oflabel during the chase in the C3-mode were as expected for C3-photosynthesis.Pulse-labelling in the CAM-mode during the last hour of thelight period, during the first part of the dark period and duringthe last hour of the dark period always led to an almost exclusiveincorporation of label into malate. Redistribution of labelfrom malate after the pulse at the end of the dark period duringthe chase in the subsequent light period followed the patternexpected for light-dependent reassimilation of CO2 remobilizedfrom malate in CAM during the light period. During the chasesin the dark period, label was transferred from l4C-malate tocitrate. This suggests that during accumulation of citric acidin the dark period of CAM in C. minor, citrate is synthesizedin the mitochondria from malate or oxaloacetate after formationof malate via phosphoenolpyruvate carboxylase. The experiment also showed that no labelled compounds are exportedfrom leaves in the CAM-mode during the dark period. In plantsof the C3-mode the roots proved to be strong sinks. Key words: Clusia minor, labelling, pulse-chase, 14CO2  相似文献   

12.
The effect of salinity on light and dark CO2,-fixation was determinedin cells of A triplex portulacoides and tomato (Lycopersiconesculenturn Mill.) grown in culture. CO2,-fixation of tomatocells was also determined in cultures adapted to mannitol andpolyethylene glycol (PEG). Salinity up to 400 mM NaCI in thecase of A triplex and up to 50 mM in the case of tomato enhancedthe rate of light-induced CO2,-flxation in unadapted cells.Higher salt concentrations led to a marked decline in CO2-flxationin both species. In salt-adapted A triplex cells no declinein the rate of light CO2,-flxation was seen even at 500 mM NaCl.Dark CO2,-fixation was approximately 40% and 80% of the lightfixation in control cell cultures of A triplex and tomato, respectively.No enhancement in dark CO2,-flxation was seen as salinity wasincreased, but a decline was found at similar salt concentrationsthat decreased fixation in the light. Mannitol-and PEG-adaptedtomato cells fixed CO2, at somewhat lower rates than the controlcells in the light but not in the dark. Key words: Salinity, CO2-fixation, cell cultures, Atriplex, tomato  相似文献   

13.
The cytotoxic effects of positively charged liposomes and theircomponents on Heterosigma akashiwo cells were investigated.Positively charged liposomes reduced cell motility and eventuallycaused cytolysis. Negatively charged and non-charged liposomeshad little effect on cell motility and/or cell viability. Damagewas also induced by a single application of some n-alkyl-amines.Among n-alkylamines tested, laurylamine (C12) was most effectivein reducing motility and causing cytolysis of cells. The extentof the deleterious effects increased with increasing concentrationsof laurylamine and with the duration of treatment. The extentof damage to cells by laurylamine changed periodically duringthe cell cycle. The effects of laurylamine began to increaseat the forth hour of the light period and began to decreaseat the first hour of the dark period, under condition of 12hours of light and 12 hours of darkness. Laurie and myristicacids, which each have a carboxyl group in place of the aminogroup of the corresponding alkylamines, laurylamine and myristylamine,had little effect on the cells. (Received December 21, 1988; Accepted March 29, 1989)  相似文献   

14.
The effect of light on NO3 utilization was investigatedin non-nodulated soybean (Clycine max L. Merr., cv. Kingsoy)plants during a 14/10 h light/dark period at a constant temperatureof 26C. A 30–50% decrease of net NO3 uptake ratewas observed 2–6 h after the lights were turned off. Thiswas specifically due to an inhibition of NO3 influx asmeasured by 15N incorporation during 5 min. The absolute valuesof NO3 efflux depended on whether the labelling protocolinvolved manipulation of the plants or not, but were not affectedby illumination of the shoots. Darkness had an even more markedeffect in lowering the reduction of 15NO3 in both rootsand shoots, as well as xylem transport of 15NO3 and reduced15N. Concurrently with this slowing down of transport and metabolicprocesses, accumulations of NO3 and Asn were significantlystimulated in roots during the dark period. These data are discussedin view of the hypothesis that darkness adversely affects NO3uptake through specific feedback control, in response to alterationsin the later steps of N utilization which are more directlydependent on light. Key words: Glycine max, light/dark cycles, nitrate uptake, nitrate reduction  相似文献   

15.
Ascorbate (AsA) peroxidase was found in six species of cyanobacteriaamong ten species tested. Upon the addition of H218O2 to thecells of AsA peroxidase-containing cyanobacteria, 16O2 derivedfrom water and 18O2 derived from H2I8O2 were evolved in thelight. The evolution of 16O2 was inhibited by DCMU and did notoccur in the dark, but I8O2 was evolved even in the dark orin the presence of DCMU. Similar light-dependent evolution of16O2 was observed in the cells of AsA peroxidase-containingEuglena and Chlamydomonas. However, the cells of AsA perox-idase-lackingcyanobacteria evolved only 18O2 in either the light or dark.Furthermore, the quenching of chlorophyll fluorescence inducedby hydrogen peroxide was observed only in the cells of the AsAperoxidase-containing Synechocystis 6803, and not in the cellsof Anacystis nidulans which lacks AsA peroxidase. Thus, cyanobacteriacan be divided into two groups, those that has and those thatlacks AsA peroxidase. The first group scavenges hydrogen peroxidewith the peroxidase using a photoreductant as the electron donor,and the second group only scavenges hydrogen peroxide with catalase. (Received July 23, 1990; Accepted October 18, 1990)  相似文献   

16.
The water relations and stomatal behaviour of a wilty line ofpea (JI 1069) were investigated and compared with those of severalnon-wilty lines (JI 1180, JI 1194, and JI 74). The leaves ofthe wilty line were found to have a lower percent water content,water potential and diffusive resistance and the dimensionsof the stomatal cells were larger than those of the non-wiltytypes. The aperture of stomata on epidermal samples taken from plantsin the light or dark period of a diurnal rhythm was consistentlylarger for the wilty pea than for the non-wilty lines, however,their stomatal responses on detached epidermis to light, CO2and KC1 concentration were similar. There was no differencein response to ABA of stomata on detached epidermis of wiltyor non-wilty types of pea. Key words: Pisum sativum, Wilty mutant, Water relations, Stomatal behaviour  相似文献   

17.
According to the Dijkshoorn-Ben Zioni model, NO3 uptakein the roots is stimulated by NO3 assimilation in theshoots, through downward phloem transport of malate synthesizedin response to reduction of NO2 to NH3. In this paper,one hypothesis resulting from this model was tested, i.e. thatthe diurnal changes in NO3 uptake are due to the lightdependence of NO3 reduction in the leaves. This dependencewas studied in detached leaves transferred to deionized wateror supplied via the transpiration stream with similar amountsof 15NO3 in light or darkness. In the dark, the reductionof previously stored NO3 or xylem-borne 15NO3was generally about 40–50% of that measured in the light.Glucose supply to the detached leaves stimulated NO3reduction in the dark, but not enough to increase it up to thesame rate as in the light. Nitrite reduction in detached leaveswas much less affected by darkness, and could be maintainedat a high level by exogenous supply of substrate. Advantagewas taken from this last observation to sustain NO2reductionin attached darkened shoots at the same rate as in the light,by ensuring an appropriate delivery of NO2 from the xylem.Although this was assumed to restore the light level of theassociated synthesis of malate, it led to a marked inhibitionof NO3 uptake. In addition, the direct supply of malateto the shoots or to the roots failed to prevent the decreaseof NO3 uptake in darkness. Thus, our conclusion is thatthe mechanisms evoked in the Dijkshoorn-Ben Zioni model do notplay an important role in the diurnal variations of NO3uptake in soybean plants. Key words: Glycine max, light/dark cycle, malate synthesis, NO3 reduction, NO3 uptake  相似文献   

18.
FAGERBERG  W. R. 《Annals of botany》1983,52(2):117-126
Stereology was used to describe cytological changes which occurin palisade cells of fully expanded leaves as part of theirnormal daily activity. These changes were evaluated by describingthe relationship between organelle volume and cell volume asratio values (i.e. percentage volumes, Vv; surface-to-volume,Sv). These ratios describe an average cell in terms of its volumecommitment to each organelle compartment. Cells were also describedin terms of actual volume (µm3) or surface area (µm2)of membrane present in an average cell. ANOVA-LSD and Mann-Whitneystatistics indicate significant changes occur in the ratio valuesof the vacuole, chloroplast, oil, starch and microbody compartmentsover the 24 h period. This indicates a re-allocation of cellspace to these compartments during this period. The Sv ratioof internal membranes of the chloroplast and mitochondria showedno significant change over 24 h indicating that there is a constantrelationship between volume and membrane surface area in theseorganelles. Significant changes occurred in average cell volumeover 24 h with maximum volume during the dark period. Sincechanges in cell volume affected the actual volume expressionof all of the organelle compartments there were diurnal variationin the actual size of these compartments, including the internalmembranes of chloroplasts and mitochondria which more than doubledin surface area. Helianthus annuus L, sunflower, cytology, stereology, quantitative microscopy, diurnal, morphometrics, ultrastructure, chlorenchyma, chloroplast, mitochondria, microbodies  相似文献   

19.
Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa   总被引:1,自引:0,他引:1  
The population dynamics of the cyanobacterium Microcystis aeruginosain a hypertrophic, subtropical lake (Hartbeespoort Dam, SouthAfrica) were followed over 4.5 years. We examined the hypothesisthat M.aeruginosa dominated (>80% by volume) the phytoplanktonpopulation up to 10 months of each year because it maintaineditself within shallow diurnal mixed layers and was thus ensuredaccess to light, the major limiting resource. Wind speeds overHartbeespoort Dam were strong enough to mix the entire epilimnionthrough Langmuir circulations only 12% of the time. At othertimes solar heating led to the formation of diurnal mixed layers(z1) that were shallower (<2 m) than the euphotic zone (zcu;mean = 3.5 m, range: 0.45–8.4 m) while the seasonal mixedlayer (zm) was always deeper than zcu (range: 7–18 m).By means of its buoyancy mechanism M.aeruginosa maintained thebulk of its population within z1, while non-buoyant speciessank into dark layers. Adaptation to strong light intensitywas implicated from low cellular chlorophyll a content (0.132µg/106 cells) and high Ik (up to 1230 µE m–2s–1). Ensured access to light, the post-maximum summerpopulations persisted throughout autumn and winter, despitesuboptimal temperatures, by sustaining low losses. Increasedsedimentation losses caused a sharp decline of the populationat the end of winter each year, and a short (2–3 months)successional episode followed, but by late spring M.aeruginosawas again dominant. The data from Hartbeespoort Dam point outthe importance of distinguishing between zm and z1, and showthe profound effect that the daily pattern of z1 as opposedto the seasonal pattern of zm, can have on phytoplankton populationspecies composition.  相似文献   

20.
The CO2 compensation point at 25 °C and 250 µEinsteinsm–2 s–1 wasmeasured for 27 bryo-phyte species, andwas found to be in the range of 45–160 µl CO2 I–1air. Under the same conditions Zea mays gave a value of 11 µlI–1 and Horde um vulgare 76 µI–1. The rate of loss of photosyntheticallyfixed 14CO2 in the light and dark in six bryophytes (three mosses,two leafy liverworts, one thalloid liverwort) was determinedin CO2-free air and 100% O2. The rate of 14CO2 evolution inthe light was less than that in the dark in CL2-free air, butin 100% O2 the rate in the light increased, so that in all butthe leafy liverworts it was greater than that in the dark. Raisingthe temperature tended to increase the rate of 14CO2 evolutioninto CO2-free air both in the light and dark, so that the light/dark(L/D) ratio did not greatly vary. The lower rate of loss of14CO2 in the light compared tothe dark could be due to partialinhibition of ‘dark respiration’ reactions in thelight, a low rate of glycolate synthesis and oxidation, or partialreassimilation of the 14CO2 produced, or a combination of someor all of these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号