首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The lowering of extracellular Ca2+ concentration in the growth medium reversibly blocks normal, but not SV40-transformed WI38 diploid fibroblasts in the early G1/G0 phase of the cell cycle. This growth response is characterized by specific changes in ionic content and transport. Ca2+ deprivation (0.03 mM) has little effect on the K+ content of either normal or transformed cells. Na+ content, however, is increased nearly 2-fold in the normal cells. This increase is presumably due to a 3-fold increase in unidirectional Na+ influx in Ca2+-deprived cells. The increased intracellular Na+ also gives rise to a nearly 3-fold enhancement of the active (ouabain-sensitive) Na+ efflux. Ca2+ deprivation causes only slight increases in Na+ influx, ouabain-sensitive Na+ efflux and intracellular Na+ in the transformed cell. In contrast, the transformed cells lose nearly 60% of their intracellular Ca2+ on deprivation, whereas normal WI38 cells lose only 10%. The data suggest that the growth arrest exhibited by the normal cell but not the transformed cell may be related to different membrane-transport and permeability changes in response to Ca2+ deprivation.  相似文献   

2.
We studied the effect of symmetric, biphasic sinusoidal electromagnetic fields (EMF) (20 Hz, 6 mT) on the differentiation of normal human skin fibroblasts (HH-8), normal human lung fibroblasts (WI38), and SV40-transformed human lung fibroblasts (WI38SV40) in in vitro cultures. Cells were exposed up to 21 days for 2 x 6 h per day to EMF. Normal mitotic human skin and lung fibroblasts could be induced to differentiate into postmitotic cells upon exposure to EMF. Concomitantly, the synthesis of total collagen as well as total cellular protein increased significantly by a factor of 5-13 in EMF-induced postmitotic cells. As analyzed by two-dimensional gel electrophoresis of [35S]methionine-labeled polypeptides, EMF-induced postmitotic cells express the same differentiation-dependent and cell type-specific marker proteins as their spontaneously arising counterparts. In SV40-transformed human lung fibroblasts (cell line WI38SV40) the exposure to EMF induced the differentiation of mitotic WI38SV40 cells into postmitotic and degenerating cells in subpopulations of WI38SV40 cell cultures. Other subpopulations of WI38SV40 cells did not show any effect of EMF on cell proliferation and differentiation. These results indicate that long-term EMF exposure of fibroblasts in vitro induces the differentiation of mitotic to postmitotic cells that are characterized by differentiation-specific proteins and differentiation-dependent enhanced metabolic activities.  相似文献   

3.
We studied the effect of symmetric, biphasic sinusoidal electromagnetic fields (EMF) (20 Hz, 6 mT) on the differentiation of normal human skin fibroblasts (HH-8), normal human lung fibroblasts (WI38), and SV40-transformed human lung fibroblasts (WI38SV40) in in vitro cultures. Cells were exposed up to 21 days for 2 × 6 h per day to EMF. Normal mitotic human skin and lung fibroblasts could be induced to differentiate into postmitotic cells upon exposure to EMF. Concomitantly, the synthesis of total collagen as well as total cellular protein increased significantly by a factor of 5–13 in EMF-induced postmitotic cells. As analyzed by two-dimensional gel electrophoresis of [35S]methionine-labeled polypeptides, EMF-induced postmitotic cells express the same differentiation-dependent and cell type-specific marker proteins as their spontaneously arising counterparts. In SV40-transformed human lung fibroblasts (cell line WI38SV40) the exposure to EMF induced the differentiation of mitotic WI38SV40 cells into postmitotic and degenerating cells in subpopulations of WI38SV40 cell cultures. Other subpopulations of WI38SV40 cells did not show any effect of EMF on cell proliferation and differentiation. These results indicate that long-term EMF exposure of fibroblasts in vitro induces the differentiation of mitotic to postmitotic cells that are characterized by differentiation-specific proteins and differentiation-dependent enhanced metabolic activities.  相似文献   

4.
Cultured vascular endothelial cells loaded with the highly fluorescent Ca(++)-sensitive dye Fura-2 were exposed to the flow of a fluid containing various concentrations of ATP (0, 0.5, 1, 5 microM) in an apparatus designed on the basis of fluid dynamics, and simultaneous changes in intracellular free Ca++ concentration were monitored by photometric fluorescence microscopy. The flow rate of the perfusate was altered from 0 to 6.3 to 22.8 to 39.0 cm/sec, inducing shear stress on the cell surface of 0, 2.9, 10.4, and 17.9 dynes/cm2, respectively. Although no significant change in intracellular Ca++ level was observed at ATP levels below 100 nM, at an ATP level of 500 nM, the intracellular Ca++ level increased together with an increase in the flow rate of the perfusate. At this level of ATP, the intracellular Ca++ levels at flow rates of 0, 6.3, 22.8, and 39.0 cm/sec were 44.8 +/- 7.3, 60.3 +/- 10.7, 74.0 +/- 5.8 and 89.4 +/- 6.4 nM (mean +/- SD; n = 8), respectively. At ATP levels over 1 microM, the flow-rate dependency of Ca++ response became less clear than that observed at the ATP level of 500 nM. These Ca++ responses to changes in flow rate disappeared when extracellular Ca++ was chelated by adding 2 mM of EGTA to the perfusate. These results suggest that the vascular endothelial cell has a mechanism that elevates the intracellular Ca++ level in accord with the flow rate at appropriate ATP concentrations, and that changes in intracellular Ca++ level under this mechanism seem to be chiefly caused by the influx of extracellular Ca++ into cells.  相似文献   

5.
The precise role of monounsaturated fatty acid (MUFA) synthesis in cell proliferation and programmed cell death remains unknown. The strong correlation of high levels of MUFA and neoplastic phenotype suggest that the regulation of stearoyl CoA desaturase (SCD) must play a significant role in cancer development. In this study, the levels of SCD protein and activity were investigated in normal (WI38) and SV40-transformed (SV40-WI38) human lung fibroblasts. Thus, the activity of SCD on exogenous [14C]stearic acid and endogenous [14C]acetate-labeled fatty acids was increased by 2.2- and 2.6-fold, respectively, in SV40-WI38 compared to WI38 fibroblasts. Concomitantly, a 3.3-fold increase in SCD protein content was observed in SV40-transformed cells. Cell transformation also led to high levels of MUFA, which was paralleled by a more fluid membrane environment. Furthermore, the levels of PPAR-gamma, a well-known activator of SCD expression, were highly increased in SV40-transformed fibroblasts. SCD activity appeared linked to the events of programmed cell death, since incubations with 40 microM etoposide induced apoptosis in SV40 cells, and led to a decrease in fatty acid synthesis, SCD activity and in MUFA cellular levels. Taken together, these results suggest that SCD protein and activity levels are associated with the events of neoplastic cell transformation and programmed cell death.  相似文献   

6.
7.
8.
The manganese superoxide dismutase (MnSOD) activity of W138 human embryonic lung fibroblasts and SV40-transformed WI38 cells was measured. Under various growth conditions, the transformed cells always had lower MnSOD activity than their normal cell counterparts. The activity of MnSOD changes greatly with the growth conditions in the WI38 cells, while the MnSOD activity in the tumor cells remained more constant. The amount of immunoreactive MnSOD was measured by Western blotting. In all cases studied, the amount of immunoreactive MnSOD was lower in the transformed cells than in the normal cells.  相似文献   

9.
The down regulation of surface membrane receptors for(125I) epidermal growth factor (EGF) has been evaluated in normal and SV40-transformed human fibroblasts (WI38) under conditions of serum-supplemented versus defined growth media. Both normal and transformed WI38 cells down regulate and recover the EGF receptor and these processes do not differ significantly in serum-supplemented versus defined media. These data are in contrast to a recent study that reported that the HeLa cell does not down regulate the EGF receptor in defined media, whereas it does in serum-supplemented media.  相似文献   

10.
11.
The nucleated cell death mediated by C5b-9 depends on the extent of C fixation and parameters that affect the ability of the cell to eliminate C5b-9. When C5b-9 formation exceeds elimination, cell death can be initiated. High Ca2+ in the medium accelerates Ehrlich ascites cell death induced by a large number of C5b-9, whereas osmotic prevention of cell swelling has little effect in protecting Ehrlich cells from killing by C5b-9. In the present study, we investigated the interrelationship between intracellular Ca2+, intra- and extracellular adenine nucleotides, and mitochondrial membrane potential, to understand the mechanism of acute cell death induced by C5b-9. When Ehrlich cells carrying C5b-8 were exposed to C9, rapid and profound ATP depletion in the cell was observed before cell death. Leakage of the adenine nucleotides ATP, ADP, and AMP also began during the prelytic phase. Studies using digital imaging fluorescence microscopy showed that loss of mitochondrial membrane potential was noted immediately after C9 addition but before nuclear staining with propidium iodide. These findings suggest that an increase in intracellular Ca2+ through C5b-9 channels and loss of mitochondrial membrane potential may initiate rapid cell death. The prelytic leakage of ATP precursors may also contribute to cell death by decreasing nucleotide pools, because recovery of ATP production was observed after a similar degree of ATP loss in cells exposed to sublethal doses of KCN, in which ADP and AMP leakage was not present.  相似文献   

12.
13.
14.
When the DNA-binding proteins (DBPs) of WI38 normal human fibroblasts and their SV40-transformed counterpart were compared, two DBPs were present in greater amounts in the transformed cells. These two DBPs, P5a and P6b, were also present in greater amounts in HeLa cells versus WI38 cells and in chemically transformed human liver cells versus normal liver cells. Therefore, these DBP differences do not appear to be specific for transformation by SV40. Increased amounts of P5a were present in 7 of 9 transformed cell lines examined. The two tumor cell lines lacking the P5a change were sensitive to density-dependent inhibition of replication, whereas the other seven cell lines were not. This correlation suggests that the increase in P5a may play a role in the release from density-dependent inhibition of replication observed in most transformed cells.  相似文献   

15.
Exogenous arachidonic acid does not stimulate insulin release in Ca++-containing medium, but a potent effect was unmasked by extracellular Ca++ depletion. This secretion met several criteria of exocytotic release. It did not require the oxygenation of arachidonate or its esterification into islet membranes, but was potentiated by the presence of 16.7 mM glucose such that 33 microM arachidonate could reverse the inhibitory effects of extracellular Ca++ removal on glucose-induced insulin secretion. Arachidonic acid alone stimulated a rise in intracellular Ca++ concentrations in dispersed islet cells (measured by the fura-2 technique) equal to that induced by 16.7 mM glucose in normal medium. Arachidonic acid may be a critical coupling signal in normal islets.  相似文献   

16.
Summary The effects of metabolic and respiratory acidosis and alkalosis on cellular calcium metabolism were studied in rat kidney cells dispersed with collagenase. In both types of acidosis, the intracellular pH, total cell calcium, and the cell relative radioactivity after 60 min of labeling are significantly depressed. Kinetic analysis of45Ca desaturation curves shows that acidosis decreases all three cellular calcium pools and depresses calcium fluxes between the superficial and cytosolic pools and between the cytosolic and mitochondrial pools. In alkalosis the intracelluar pH, the total cell calcium, and the cell relative radioactivity are significantly increased. Kinetic studies show that in alkalosis, only the mitochondrial pool is consistently increased. Calcium exchange between the mitochondrial and cytosolic pool is increased in metabolic alkalosis only. These results suggest that hydrogen ion is an important modulator of calcium metabolism, and that the intracellular pH rather than extracellular pH is the critical factor in determining the calcium status of cells during altered acid-base conditions.  相似文献   

17.
This study investigates the calcium mechanisms involved in growth arrest induced by extracellular ATP in DU-145 androgen-independent human prostate cancer cells. Exposure of DU-145 cells to 100 microM ATP produced an increase in cytoplasmic calcium concentration ([Ca(2+)](i)), due to a mobilization of calcium from the endoplasmic reticulum stores and to subsequent capacitative calcium entry (CCE). We have shown that this [Ca(2+)](i) increase occurs after stimulation by ATP of the phospholipase C (PLC) pathway. For the first time, we have identified the inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms expressed in this cell line and have demonstrated a participation of protein kinase C in CCE. Using fluorescence imaging, we have shown that a long-term treatment with ATP leads to a decrease in the intraluminal endoplasmic reticulum calcium concentration as well as in the amount of releasable Ca(2+). Modulating extracellular free calcium concentrations indicated that variations in [Ca(2+)](i) did not affect the ATP-induced growth arrest of DU-145 cells. However, treating cells with 1 nM thapsigargin (TG) to deplete intracellular calcium pools prevented the growth arrest induced by ATP. Altogether, these results indicate that growth arrest induced in DU-145 cells by extracellular ATP is not correlated with an increase in [Ca(2+)](i) but rather with a decrease in intracellular calcium pool content.  相似文献   

18.
19.
Gamma radiation sensitivities of continuous cell lines from nine human tumours were measured, comparing four derived from transitional cell carcinomas of the bladder with five from non-seminomatous germ cell tumours of the testis. The testicular cells were significantly more radiosensitive than the bladder cells, corresponding to the response to therapy of these tumour types in patients. These observations indicate that radiosensitivity is retained in vitro and is an inherent property of the testicular tumour cells. These gamma radiation sensitivities were compared with those of SV40-transformed fibroblasts derived from a normal individual and one with the heritable disease, ataxia-telangiectasia (A-T). The bladder cells had gamma radiation sensitivities similar to that of the SV40-transformed normal line. The testicular cells were hypersensitive to gamma radiation, although not as sensitive as the SV40-transformed A-T line. A-T cells, unlike those derived from normal individuals, continue to synthesize DNA at a normal rate following radiation exposure, prompting a comparison of the kinetics of DNA synthesis in three bladder and three testicular tumour cell lines. One of the bladder and two testicular lines showed a reduced inhibition when compared to the other tumour cell lines and the SV40-transformed normal line. Thus there was no clear association between DNA synthesis inhibition and radiosensitivity.  相似文献   

20.
Induction of cellular senescence is a common response of a normal cell to a DNA-damaging agent, which may contribute to cancer chemotherapy- and ionizing radiation-induced normal tissue injury. The induction has been largely attributed to the activation of p53. However, the results from the present study suggest that busulfan (BU), an alkylating agent that causes DNA damage by cross-linking DNAs and DNA and proteins, induces senescence in normal human diploid WI38 fibroblasts through the extracellular signal-regulated kinase (Erk) and p38 mitogen-activated protein kinase (p38 MAPK) cascade independent of the p53-DNA damage pathway. The induction of WI38 cell senescence is initiated by a transient depletion of intracellular glutathione (GSH) and followed by a continuous increase in reactive oxygen species (ROS) production via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which leads to the activation of the Erk and p38 MAPK pathway. Incubation of WI38 cells with N-acetylcysteine (NAC) replenishes intracellular GSH, abrogates the increased production of ROS, ameliorates Erk and p38 MAPK activation, and attenuates senescence induction by BU. Thus, inhibition of senescence induction using a potent antioxidant or specific inhibitor of the Erk and p38 MAPK pathway has the potential to be developed as a mechanism-based strategy to ameliorate cancer therapy-induced normal tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号