首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
E V YoungLai 《Steroids》1975,26(4):502-506
Luteinizing hormone (LH) causes a dramatic increase in steroidogenesis by isolated rabbit follicles which secrete testosterone as a major product. In order to determine whether the source of this testosterone could be from stores of cholesterol esters rabbit follicles were incubated with LH and phenylmethylsulfonyl fluoride (PMSF) an inhibitor of cholesterol esterase. No inhibition of testosterone production could be detected in the presence of PMSF indicating that cholesterol esters are not precursors for testosterone synthesis by rabbit follicles.  相似文献   

2.
Ovulation is a complex phenomenon, involving a series of biochemical events within the ovary, leading to the rupture of the follicle. This paper summarizes recent studies in our laboratory of some of these biochemical changes using the rabbit as an experimental model. It has been shown in our laboratory that isolated Graafian follicles obtained from oestrous rabbits synthesize steroids and cyclic AMP when incubated in vitro. Luteinizing hormone added to the incubation medium increased steroidogenesis and cyclic AMP synthesis many fold. When follicles were isolated from rabbits at different times following the ovulatory stimulus (mating or HCG injection) it was found that the in vitro response to LH in terms of steroidogenesis and cylcic AMP synthesis was lost as ovulation approached. In contrast, when prostaglandins (PGF and PGE) were measured in rabbit Graafian follicles it was found that the PGF and PGE levels increased as ovulation approached. From these data and from reports in the literature, we have developed a hypothetical model for ovulation in the rabbit which may help in a better understanding of the ovulatory process.  相似文献   

3.
We repeatedly established a nontransformed steroidogenically active human ovarian cell culture derived from oophorectomy specimens. The cells maintained steroidogenic activity for 3-5 passages (6-8 weeks) and responded to stimulation by insulin and gonadotropin. With pregnenolone as substrate, LH stimulated progesterone production up to 124% and FSH up to 121%. Insulin alone stimulated progesterone production up to 135%, in the presence of LH up to 191%, and in the presence of FSH up to 170%. With dehydroisoandrosterone (DHA) as substrate, insulin alone stimulated testosterone production up to 117%, and in the presence of LH (but not FSH) up to 125%. With androstenedione as substrate, insulin alone stimulated estradiol production up to 133%, FSH alone up to 188%, and LH with insulin up to 217%. With progesterone as substrate and in the presence of LH (but not FSH), 17-alpha-hydroxylase activity was stimulated up to 131%. With DHA as substrate and in the presence of LH, 3-beta-hydroxysteroid dehydrogenase (3-beta-HSD) activity was stimulated up to 139%. With androstenedione as substrate, insulin alone stimulated aromatase activity up to 202%, LH up to 208%, and FSH up to 251%. Under the same conditions, in the presence of LH and insulin, aromatase activity was stimulated up to 342%, and in the presence of FSH and insulin, up to 318%. With testosterone as substrate, insulin alone stimulated aromatase activity up to 122%. With testosterone as substrate, in the presence of LH and insulin, aromatase activity was stimulated up to 136%, and in the presence of FSH and insulin, up to 156%. Immunocytochemistry studies directly confirmed presence of aromatase and 3-beta-HSD in these cultured cells. We conclude that a steroidogenically active nontransformed long-term human ovarian cell culture can be repeatedly established from oophorectomy specimens, providing uninterrupted supply of cultured human ovarian cells for a variety of studies of ovarian physiology.  相似文献   

4.
Since administration of the antiprogesterone RU486 to cyclic female rats at metestrus and diestrus results in increased serum levels of LH, estradiol, and testosterone at proestrus, we investigated whether RU486 affects follicular steroidogenesis. Female rats with a 4-day estrous cycle, induced experimentally by a single injection of bromocriptine on the morning of estrus, were given RU486 (2 mg) twice daily (0900 and 1700 h) on metestrus and diestrus. At proestrus the preovulatory follicles were isolated and incubated for 4 h in the absence and presence of LH. In the absence of LH, accumulation of estradiol, testosterone, and progesterone in the medium was not different for RU486-treated rats and oil-treated controls. In contrast, LH-stimulated estradiol, testosterone, and progesterone secretions were significantly lower in RU486-treated rats compared with controls. Addition of pregnenolone to the incubation medium resulted in a significantly lower increase of progesterone in follicles from RU486-treated rats compared with those from oil-treated controls. This suggests that 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity is decreased by administration of RU486 in vivo. Aromatase and 17 alpha-hydroxylase/C17-20 lyase activities were not affected: addition of substrate (androstenedione and progesterone respectively) did not affect differently the amount of product formed (estradiol and testosterone) in RU486- and oil-treated rats. However, LH-stimulated pregnenolone secretion was lower in follicles from RU486-treated rats compared with follicles from oil-treated controls, suggesting that either cholesterol side-chain cleavage activity or LH responsiveness is decreased. At proestrus the preovulatory follicles from RU486- and oil-treated rats were not morphologically different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The follicle-deplete mouse ovary produces androgen   总被引:4,自引:0,他引:4  
The follicle-depleted postmenopausal ovary is enriched in interstitial cells that produce androgens. This study was designed to cause follicle depletion in mice using the industrial chemical, 4-vinylcyclohexene diepoxide (VCD), and characterize the steroidogenic capacity of cells in the residual ovarian tissue. From a dose-finding study, the optimal daily concentration of VCD was determined to be 160 mg/kg. Female B6C3F(1) immature mice were treated daily with vehicle control or VCD (160 mg kg(-1) day(-1), 15 days, i.p.). Ovaries were removed and processed for histological evaluation. On Day 15 following onset of treatment, primordial follicles were depleted and primary follicles were reduced to about 10% of controls. On Day 46, primary follicles were depleted and secondary and antral follicles were reduced to 0.7% and 2.6% of control, respectively. Seventy-five percent of treated mice displayed disruptions in estrous cyclicity. All treated mice were in persistent diestrus (acyclic) by Day 58. Plasma FSH levels were increased (P < 0.05) relative to controls on Day 37 and had plateaued by Day 100. Relative to age-matched cyclic controls, by Day 127, the significant differences in VCD-treated mice included reduced ovarian and uterine weights, elevated plasma LH and FSH, and reduced plasma progesterone and androstenedione. Furthermore, plasma 17beta-estradiol levels were nondetectable. Unlike controls, immunostaining for LH receptor, and the high density lipoprotein receptor (SR-BI), was diffuse in ovarian sections from VCD-treated animals. Ovaries from Day 120 control and VCD-treated animals were dissociated and dispersed cells were placed in culture. Cultured cells from ovaries of VCD-treated animals produced less LH-stimulated progesterone than control cells. Androstenedione production was nondetectable in cells from cyclic control animals. Conversely, cells from VCD-treated animals produced androstenedione that was doubled in the presence of insulin and LH (1 and 3 ng/ml). Collectively, these data demonstrate that VCD-mediated follicle depletion results in residual ovarian tissue that may be analogous to the follicle-deplete postmenopausal ovary. This may serve as a useful animal model to examine the dynamics of follicle loss in women as ovarian senescence ensues.  相似文献   

6.
Rabbit ovarian follicles were incubated without stimulation, with LH and with LH + an inhibitor or steroid biosynthesis. Formation of prostaglandins PGE and PGF and of progesterone and estradiol was measured in these incubates. It was found that aminoglutethimide phosphate (AGP) inhibited the LH stimulated biosynthesis of both prostaglandins and steroids. However U 30870 and Metyrapone, while completely inhibiting the LH stimulated biosynthesis of progesterone and estradiol respectively, had no effect on the formation of prostaglandins. Further, the inhibition of prostaglandin formation by AGP could not be reversed by exogenou steroids. It, therefore, appears that the effect of AGP on prostaglandin biosynthesis may not be related to its effect on steroid biosynthesis. However, the response of rabbit follicles to AGP is contrary to that reported for rat follicles and indicates different control mechanisms for prostaglandin formation in the follicles of the two species.  相似文献   

7.
Hamster ovarian follicles at Stages 1 to 10 (Stages 1-4: follicles with 1-4 layers of granulosa cells (GC); Stages 5-7: 5-10 layers GC plus theca; Stages 8-10: antral follicles) were isolated on the morning of proestrus or estrus and incubated for 2 h in the absence or presence of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (Prl), progesterone (P4), 17 alpha-hydroxyprogesterone (17OHP), or androstenedione (A). Steroid accumulations in the media were measured by radioimmunoassay (RIA). On proestrus, without any hormonal stimulus, consistent accumulation of P4 through estradiol-17 beta (E2) occurred in low amounts only from Stage 6 and on; both FSH (5-25 ng) and LH (1-25 ng) significantly stimulated steroidogenesis by Stage 6-10 follicles, and the effects of FSH, except for Stage 10, were largely attributable to LH contamination. However, 25 ng FSH significantly stimulated A production by Stages 1-4, whereas 1-25 ng LH was ineffective. On estrus, follicles at all stages, especially 1-6, showed significant and dose-dependent increases in P4 production in response to FSH; both FSH and LH significantly stimulated P4 and 17OHP accumulation from Stage 5 onwards; however, there was no increase in A and E2 compared to controls. Even the smallest estrous follicles showed a shift to predominance of P4 accumulation. On proestrus, Prl had a negative influence on LH-induced accumulation of P4 and 17OHP by Stages 7-9 and 6-8, respectively, without affecting A or E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Laparoscopy was utilized to determine the ovulatory response of the domestic cat to various dosages of human chorionic gonadotropin (HCG) administered intramuscularly at one or two time periods during estrus. A linear HCG dose-ovulatory response was observed in queens receiving 0--500 IU HCG as a single injection on day 1 or as injections given on days 1 and 2 of estrus. Animals treated with 500 IU HCG on day 1 or days 1 and 2 of estrus produced the maximum percent ovulation rates based on pre- and post-HCG ovarian morphology observation by laparoscopy (100.0, 95.9%, respectively). A single injection of 500 IU HCG produced a significant increase (p less than 0.05) in mean percent ovulation rate in comparison to the 0, 50 and 100 IU HCG single injections. Administration of 500 and 250 IU HCG for 2 days of estrus resulted in a greater percent ovulation rate than the 2-day injection of 50 IU (p less than 0.05). These results indicate that the proportion of mature follicles ovulating in an induced ovulator, such as the cat, is an increasing function of graded dosages of exogenous hormone.  相似文献   

9.
The possibility that prostaglandins might be responsible for the development of the pre-ovulatory refractoriness to the stimulation by LH of cyclic AMP accumulation in vitro in the Graafian follicle was examined. Isolated rabbit Graafian follicles were obtained at estrus and at 0.5, 5 and 9 hours after an ovulatory dose of LH. The follicles were incubated in vitro in the presence of (8-3H)adenine and the accumulation of (8-3H)cyclic AMP measured. Follicles from estrous animals responded to the in vitro addition of LH with a marked increase of cyclic AMP accumulation and lost this response as the time of ovulation approached. Animals pretreated with indomethacin, which inhibits the usual pre-ovulatory rise of follicular prostaglandin levels, showed essentially the same loss of responsiveness. Indomethacin alone was without effect. It is concluded that prostaglandins are not the major factor in the development of refractoriness to LH stimulation in vitro which has been observed in pre-ovulatory follicles.  相似文献   

10.
Prostaglandins of the F and E series at concentrations from 1 to 100 microgram/ml had no effect on steroidogenesis by isolated rabbit follicles. Indomethacin and 7-oxa-13-prostynoic acid at doses lower than 100 microgram/ml failed to prevent the LH-induced increase in testosterone accumulation by follicles. At 1 mg/ml these inhibitors prevented the LH effects. Prostaglandin E2 and F2alpha had no effect on testosterone accumulation. However, prostaglandin E2 seemed to enhance the LH-induced accumulation of androstenedione and progesterone by the follicles. These data suggest that prostaglandins play a minor role in steroidogenesis by isolated rabbit ovarian follicles.  相似文献   

11.
Twenty-four Scottish Blackface ewes (mean weight 50.0 +/- 0.1 kg with ovulation rate 1.3 +/- 0.1) were randomly divided into 4 groups of 6 animals. Under general anesthesia, following the collection of a timed sample of ovarian venous blood, the ovaries of these animals were collected either on Day 10 of the luteal phase or 12, 24, and 48 h after a luteolytic dose of a prostaglandin (PG) F2 alpha analogue (cloprostenol 100 micrograms i.m.) administered on Day 10. All follicles greater than 3 mm were dissected from the ovaries and incubated in Medium 199 (M199) at 37 degrees C for 2 h, following which the granulosa cells were harvested and incubated in triplicate for 24 h in M199 with or without ovine FSH or ovine LH. Plasma and culture media samples were assayed for inhibin, estradiol (E2), androstenedione (A4), and testosterone (T) by specific RIA. After correcting for hematocrit, ovarian secretion rates were calculated from the product of the plasma concentration and flow rate. The rate of ovarian inhibin secretion during the luteal phase was similar from ovaries categorized on the basis of presence of luteal tissue (1.0 +/- 0.3 and 0.9 +/- 0.5 ng/min for CL present and absent, respectively), confirming that the ovine CL does not secrete appreciable amounts of inhibin. Inhibin secretion was higher (p less than 0.05) at 12 h after PG-induced luteolysis but not at 24 or 48 h compared to values for luteal phase control ewes. Although ovaries containing large estrogenic follicles (greater than or equal to 4 mm in diameter and classified as estrogenic from in vitro criteria) secreted the most inhibin (55%; p less than 0.05), both ovaries containing large nonestrogenic follicles (33%) and small (11%; less than 4 mm in diameter) follicles secreted appreciable amounts of inhibin. This contrasted strongly with E2 where greater than 80% of the steroid was secreted by large estrogenic follicles. The rate of ovarian inhibin secretion was positively correlated (p less than 0.05) with the rate of E2, A4, and T secretion. Overall, there was no significant effect of stage of cycle on follicular inhibin content after 2 h incubation in vitro, release of inhibin by follicles incubated in vitro, or synthesis of inhibin by granulosa cells cultured in vitro. FSH and LH had no effect on the production of either inhibin or estradiol by cultured granulosa cells. Follicular diameter was positively correlated (p less than 0.001) with follicular inhibin and steroid release. Follicular inhibin content after 2 h incubation in vitro was more highly correlated with inhibin release by incubated follicles (r = 0.7; p less than 0.001) than with inhibin synthesis by granulosa cells in vitro (0.4; p less than 0.01).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Previous work has demonstrated that cross talk between G protein-coupled LH receptors and epidermal growth factor receptors (EGFR) is essential for LH-induced steroid production in ovarian follicles and testicular Leydig cells. Here we demonstrate that G protein-coupled receptor (GPCR)/EGFR cross talk is also required for ACTH-induced steroidogenesis in Y1 adrenal cells. Moreover, we confirm that the signaling pathway from GPCR to Erk activation is conserved in all three steroidogenic tissues. ACTH or LH induces Gα(s), resulting in elevated cAMP and protein kinase A activation. cAMP/protein kinase A then triggers EGFR trans-activation, which promotes Erk signaling and subsequent steroidogenesis. Interestingly, although EGFR trans-activation is conserved in all three tissues, the specific mechanisms regulating this receptor cross talk differ. ACTH and LH trigger matrix metalloproteinase (MMP)-mediated release of EGFR ligands in adrenal and gonadal cells, respectively. However, this extracellular, ligand-dependent EGFR transactivation is required only for LH-induced steroidogenesis in ovarian follicles, reflecting the unique requirement of cell-cell cross talk for ovarian steroid production. Furthermore, MMP2 and MMP9 appear to regulate LH-induced steroidogenesis in mouse ovarian follicles, because a specific MMP2/9 inhibitor as well as the MMP2/9 inhibitor doxycycline suppress LH-induced follicular steroid production in vitro. Notably, although EGFR or MMP inhibition minimally affects estrous cycling in female mice, they attenuate ovarian steroidogenesis in response to LHR overstimulation in vivo. These results may have implications with regard to EGFR inhibitor use in various cancers as well as in polycystic ovarian syndrome, where excess LH-driven ovarian androgen production might be controlled by MMP2/9 inhibition.  相似文献   

13.
Rabbit ovarian follicles were incubated without stimulation, with LH and with LH + an inhibitor of steroid biosynthesis. Formation of prostaglandins PGE and PGF and of progesterone and estradiol was measured in these incubates. It was found that aminoglutethimide phosphate (AGP) inhibited the LH stimulated biosynthesis of both prostaglandins and steroids. However U 30870 and Metyrapone, while completely inhibiting the LH stimulated biosynthesis of progesterone and estradiol respectively, had no effect on the formation of prostaglandins. Further, the inhibition of prostaglandin formation by AGP could not be reversed by exogenous steroids. It, therefore, appears that the effect of AGP on prostaglandin biosynthesis may not be related to its effect on steroid biosynthesis. However, the response of rabbit follicles to AGP is contrary to that reported for rat follicles and indicates different control mechanisms for prostaglandin formation in the follicles of the two species.  相似文献   

14.
The possibility that prostaglandins might be responsible for the development of the pre-ovulatory refractoriness to the stimulation by LH of cyclic AMP accumulation in the Graafian follicle was examined. Isolated rabbit Graafian follicles were obtained at estrus and at 0.5, 5 and 9 hours after an ovulatory dose of LH. The follicles were incubated in the presence of [8-3H]adenine and the accumulation of [8-3H]cyclic AMP measured. Follicles from estrous animals responded to the addition of LH with a marked increase of cyclic AMP accumulation and lost this response as the time of ovulation approached. Animals pretreated with indomethacin, which inhibits the usual pre-ovulatory rise of follicular prostaglandin levels, showed essentially the same loss of responsiveness. Indomethacin alone was without effect. It is concluded that prostaglandins are not the major factor in the development of refractoriness to LH stimulation which has been observed in pre-ovulatory follicles.  相似文献   

15.
Ovarian follicles from vitellogenic greenback flounder (Rhombosolea tapirina) were incubated in L15 medium alone, or containing human chorionic gonadotropin (hCG), dibutyryl cyclic AMP (dbcAMP) or the steroid precursors testosterone (T), 17-hydroxyprogesterone (17P) and androstenedione (A) in the presence of vitellogenin (Vtg) at 0.1-5.0mg mL(-)(1). Medium concentrations of 17beta-estradiol (E(2)) and T were measured by radioimmunoassay. HCG generally stimulated follicular E(2) but not T production, whereas 17P, A and T stimulated production of E(2), T, and E(2) respectively. Treatment of follicles with dbcAMP inhibited follicular E(2) production, but increased follicular T production at high doses. The effect of low concentrations of Vtg on follicular steroid production was variable; however, higher doses of Vtg significantly suppressed basal, hCG-, dbcAMP- and steroid precursor-stimulated follicular E(2) and T production. The results of this study show that high concentrations of Vtg may suppress follicular steroid production by interfering in the steroidogenic pathway. This suggests that Vtg may regulate its own production by limiting the ovarian production of E(2).  相似文献   

16.
In the absence of HCG, production of testosterone by whole testes superfused in vitro was quite constant during the 5-hr superfusion period. Addition of 23-184 mIU/ml HCG caused a significant increase of testosterone production which was apparent from 30 min after start of superfusion. Basal and HCG-stimulated testosterone production by whole testes was significantly higher (400, 1950 ng/testis/5 hr, without and with 100 mIU HCG) than by isolated cells (200, 1350 ng/testis/5 hr). Incubation of isolated interstitial cells in medium 199 supplemented with fetal calf serum (FCS), (N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid, HEPES) and 3-isobutyl-methylxanthine (MIX), and in medium 199 without FCS, HEPES or MIX, gave similar testosterone responses. While centrifugation at 8000 g for 2 min drastically diminished testosterone formation by isolated interstitial cells, production was similar by cells incubated in either 0.5, 1.0 or 1.5 ml medium. A significant decrease of testosterone synthesis by isolated interstitial cells was found when cells were stored at 4 degrees C for 2 days and then were incubated at 35 degrees C for 6 hr without or with 1-1000 microIU HCG. While isolated interstitial cells incubated at 5 degrees C did not produce testosterone at all, testosterone production increased to 49.5 +/- 3.9 ng/10(5) cells (30 degrees C) and 24.1 +/- 1.1 ng/10(5) cells (40 degrees C), respectively. HCG-stimulated testosterone production was maximal when interstitial cells were incubated at 34 degrees C.  相似文献   

17.
Previously described models for avian ovarian steroidogenesis, using mature, 25-40-mm preovulatory follicles as the source of tissues, were based on the assumption that interaction of the granulosa layer, as the predominant source of progesterone, with adjacent theca cells is required for maximal production of C21, C19, and C18 steroids. In the present study, we evaluated the steroidogenic capacity of ovarian cells isolated from less mature, 6-8-mm and 9-12-mm follicles in the chicken ovary (representative of a stage of development 2-3 wk prior to ovulation) to determine at which stage of follicular development granulosa and/or theca cells become steroidogenically competent. Granulosa cells collected from 6-8-mm follicles were found to be virtually incompetent to produce steroids, containing extremely low basal levels of progesterone (12 pg/5 x 10(5) cells) and failing to respond with increased steroid output following a 3-h exposure to ovine LH (oLH; 0.1 and 100 ng/0.5 ml), ovine FSH (oFSH; 100, 500, and 1,000 ng/0.5 ml), 8-bromo-cyclic adenosine monophosphate (8-bromo-cAMP; 0.33 and 3.33 mM) or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, addition of pregnenolone (20 and 200 ng/0.5 ml) to granulosa incubations resulted in significantly increased progesterone levels. Granulosa cells of 6-8-mm follicles also failed to increase cAMP formation in the presence of oLH (10, 100, and 1,000 ng/0.5 ml) and 3-isobutyl-1-methylxanthine (IBMX; 10 microM), but responded to stimulation with 1,000 ng oFSH (4.4-fold increase over basal) or 10 microM forskolin (32-fold increase over basal) in the presence of IBMX. In contrast, granulosa cells isolated from 9-12-mm follicles and incubated for 3 h in vitro were found to contain basal progesterone levels 200-fold higher than those found in granulosa cells of 6-8-mm follicles. Furthermore, granulosa cells of 9-12-mm follicles markedly increased progesterone production following incubation in the presence of oFSH (100-1,000 ng/0.5 ml), 8-bromo-cAMP (0.33 and 3.33 mM), or 25-hydroxycholesterol (250 and 2,500 ng/0.5 ml). However, these granulosa cells remained unresponsive to oLH (0.1, 10, and 100 ng/0.5 ml), failing to increase cAMP accumulation (in the presence of IBMX) and progesterone output. Theca cells of small yellow follicles were found to produce measurable basal levels of progesterone, androstenedione, and estradiol, and levels of each steroid were significantly increased following a 3-h challenge with oLH, 8-bromo-cAMP, 25-hydroxycholesterol, and pregnenolone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In the turkey, the onset of incubation behavior is associated with altered ovarian steroidogenesis, ovarian regression, decreased, LH secretion, and increased serum prolactin (Prl) levels. To clarify the relative contribution of circulating LH and Prl to the initiation of ovarian regression, laying hens were exposed for 0, 3, 7, or 14 days to a forced molting procedure (exposure to reduced day length of 6L:18D and removal of feed and water for the initial 3 days) that induces ovarian regression and decreased LH levels but does not increase Prl levels. On each of these days, hens were killed and granulosa and theca interna cells from the largest (F1) and fifth largest (F5) preovulatory follicles and total cells from the small white follicles (SWF) were incubated for 5 h in the presence or absence of ovine LH (oLH; 0-1,000 ng/ml). Force-molted hens exhibited diminished levels of circulating LH, Prl, progesterone (P), androgen (A), and estradiol (E) by Day 3 of treatment. Ovarian atresia began in F1 by the third day of treatment, and included F1 and F5 by the seventh day. No preovulatory follicles were present on the fourteenth day. With both F1 and F5 granulosa cells, production of P in the presence of oLH was initially enhanced (Day 3) and later absent (Day 7). In contrast, production of A by F5 theca interna cells in the presence of oLH was initially suppressed (Day 3) and then returned to pretreatment levels (Day 7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Intact ovarian follicles, obtained from untreated and human chorionic gonadotropin (HCG) treated Japanese yellowtail Seriola quinqueradiata during different maturational stages, were incubated with radioactive [3H]pregnenolone, [3H]17‐hydroxyprogesterone or [14C] androstenedione and steroid metabolites identified by thin layer chromatography (TLC) followed by recrystallization to constant specific activity. In untreated late vitellogenic (0 h) follicles, androstenedione was the major product with smaller amounts of testosterone and oestradiol‐17α. In post‐vitellogenic (12 h post‐injection) intact follicles, androstenedione predominated, and although testosterone and oestradiol‐17α were not produced, there were small amounts of 17, 20β‐dihydroxy‐4‐pregnen‐3‐one (17,20β‐P) and 17,21‐dihydroxy‐4‐pregnene‐3, 20‐dione (11‐deoxycortisol). In HCG‐treated fish, a steroidogenic shift resulted in the disappearance of testosterone and oestradiol‐17 coinciding with the appearance of 17, 20β‐P. During early and late final oocyte maturation FOM (24 and 36 h post‐injection), there was a five‐ to seven‐fold increase in the production of 17, 20β‐P, whereas production of 11‐deoxycortisol remained almost the same. During FOM, in addition to 17,20β‐P, its 5β‐reduced metabolite, 17,20β‐dihydroxy‐5β‐pregnan‐3‐one (5β‐17,20β‐P) was synthesized, suggesting a decrease in maturation‐inducing 17,20β‐P activity. 17, 20β,21‐Trihydroxy‐4‐pregnen‐3‐one (20β‐S) was not synthesized by ovarian fragments in Japanese yellowtail at any maturational stage. The metabolites identified on TLC during FOM were tested to evaluate their maturation‐inducing activity in an in vitro bioassay. Of the steroids tested, 17,20β‐P was the most effective inducer of germinal vesicle breakdown (GVBD), followed by 5β‐17,20β‐P. Timely synthesis of 17,20β‐P immediately prior to and during FOM as well as its great potency in inducing GVBD in vitro supports the evidence for a physiological role of 17,20β‐P as a maturation‐inducing hormone in Japanese yellowtail.  相似文献   

20.
给大鼠灌服醋酸棉酚30 mg/kg/d,每周6次,持续4周。给药2周后,血浆睾酮水平显著下降并持续至第4周,同时间质细胞呈萎缩性改变。醋酸棉酚明显抑制成年大鼠对HCG反应性,使睾丸LH/HCG受体亲和力下降,受体数目略有减少。结果提示,醋酸棉酚抑制大鼠睾丸酮的产生及降低成年大鼠睾丸对HCG的反应性,推测其机制是由于醋酸棉酚干扰了睾丸HCG受体功能而造成的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号