首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halimeda bioherms, occurring primarily along the western and southern margins of Kalukalukuang Bank in the eastern Java Sea, display a wide variety of thicknesses and shapes. In general, high-frequency forms of the northern bank are replaced by thicker and lower frequency forms along the deeper southern margin. Sidescan sonar data suggest aperiodic reworking of shallow bioherm crests of the northern bank into features suggestive of bedforms. These features are not associated with deeper bioherms of the southern bank. Cores from the bioherms indicate that they consist mostly of disarticulated Halimeda plates set in a lime mud matrix composed largely of Halimeda fragments and foraminifera tests. Carbon-14 dating shows that, with exception of some deep southern bank examples, bioherms are actively accreting. Results of mineralogy and elemental chemistry on piston core PC-12 suggest cyclic variations in Mg-calcite (cement in Halimeda utricles), which may be related to periodic excursions of cold Pacific throughflow water onto the bank. Composition of the Mg-calcite (8.6 mole-%) suggests a temperature of formation of about 22 °C, which is 7 °C below average surface water temperatures. The carbon and oxygen isotope compositions of both aragonite and Mg-calcite phases are remarkably homogeneous, but were inconclusive with regard to the cold-water intrusion hypothesis. However, a lack of reef-building corals below a depth of 15 m, abundance of Halimeda bioherms on the western margin of K-Bank, where upwelling is predicted, extensive boring of sedimentary particles by endolithic boring algae, and high nutrient values of water at the thermocline (50–70 m deep) all support the incursion of cold, nutrient-rich water onto the bank. Upwelling and nutrient overloading are suggested as explanations for remarkable algal growth at the expense of reef-building corals.  相似文献   

2.
Twenty-six percent of the total shelf area in the Northern Region of the Great Barrier Reef Province between latitudes 14°27 and 15°02S is occupied by algal (Halimeda) lithofacies. Sea-bed relief over this bankforming algal lithofacies, which dominates the outer shelf, is generally complex and variable over relatively short distances, but lateral continuity of morphological features near Petricola and Stewart shoals has been demonstrated by parallel profiling. The most prominent subbttom reflector is a pre-Holocene erosion surface, regarded as the Holocene/Pleistocene unconformity. In this area, the maximum thickness of Holocene Halimeda banks above the main subbottom reflector is 19 m. Seismic response suggests three main sequences in the Halimeda bank depostis, which probably relate to changes in environmental conditions, and the recognition of similar seismic characteristics in the deposits beneath the Holocene/Pleistocene unconformity indicates that Halimeda banks may have been a feature of the outer shelf of the Great Barrier Reef in Plesitocene times.  相似文献   

3.
A recent research cruise to examine small, detached carbonate platforms situated on the Nicaraguan Rise in the SW Caribbean Sea has revealed the presence of numerous Halimeda bioherms. Based upon interpretations from seismic reflection data some exceed 140 m in relief. This is the first documented occurrence of these green-algal buildups in the Caribbean/Bahama Bank region. The Halimeda bioherms form a nearly continuous band that borders the margins of the Miskito Channel—a shallow, open, 125 km long seaway. This 220 m deep channel bisects the Miskito Bank which is a major carbonate shelf. In seismic profile the bioherms appear acoustically soft and reveal a local relief of 20–30 m. Tops of these features lie in about 40–50 m of water. Samples from dredge hauls are coarse, poorly cemented packstones/grainstones which are dominated by largely unbroken, disarticulated Halimeda segments set in a poorly sorted sandy matrix. Exposed surfaces were stained brown. Very little living material was brought up in the dredges. The significance of these bioherms and their full extent in the Caribbean are not understood. Undoubtedly, further study will provide important answers concerning their role in the geologic development of Caribbean carbonate platforms.  相似文献   

4.

Halimeda bioherms occur as extensive geological structures on the northern Great Barrier Reef (GBR), Australia. We present the most complete, high-resolution spatial mapping of the northern GBR Halimeda bioherms, based on new airborne lidar and multibeam echosounder bathymetry data. Our analysis reveals that bioherm morphology does not conform to the previous model of parallel ridges and troughs, but is far more complex than previously thought. We define and describe three morphological sub-types: reticulate, annulate, and undulate, which are distributed in a cross-shelf pattern of reduced complexity from east to west. The northern GBR bioherms cover an area of 6095 km2, three times larger than the original estimate, exceeding the area and volume of calcium carbonate in the adjacent modern shelf-edge barrier reefs. We have mapped a 1740 km2 bioherm complex north of Raine Island in the Cape York region not previously recorded, extending the northern limit by more than 1° of latitude. Bioherm formation and distribution are controlled by a complex interaction of outer-shelf geometry, regional and local currents, coupled with the morphology and depth of continental slope submarine canyons determining the delivery of cool, nutrient-rich water upwelling through inter-reef passages. Distribution and mapping of Halimeda bioherms in relation to Great Barrier Reef Marine Park Authority bioregion classifications and management zones are inconsistent and currently poorly defined due to a lack of high-resolution data not available until now. These new estimates of bioherm spatial distribution and morphology have implications for understanding the role these geological features play as structurally complex and productive inter-reef habitats, and as calcium carbonate sinks which record a complete history of the Holocene post-glacial marine transgression in the northern GBR.

  相似文献   

5.
Since the correlation between carbon dioxide (CO2) levels and global temperatures was established in the ice core records, quantifying the components of the global carbon cycle has become a priority with a view to constraining models of the climate system. The marine carbonate budget is still not adequately constrained and the quantitative significance of the calcareous green alga Halimeda still remains particularly poorly understood. Previously, it has been suggested that Halimeda bioherms on the shelf of the Great Barrier Reef may contain a volume of carbonate equal to or greater than that contained within the shelf edge coral reefs. This study uses published datasets to test this hypothesis in the Northern Great Barrier Reef (NGBR) province. It is estimated that Halimeda bioherms on the outer shelf of the NGBR contain at least as much (and up to four times more) CaCO3 sediment as the adjacent ribbon reef facies. Globally, if these findings are even only partially applicable, the contribution of shallow water carbonate sediments to the global carbon budget based on coral reefs alone is currently substantially underestimated.  相似文献   

6.
Bryopsidalean algal meadows in water depths of 20–40 m on the leeward side of western Great Bahama Bank (WGBB) lie between non-skeletal-dominated sand flats on the bank top to the east and a cemented steep escarpment to the west. The meadows contain dense populations of rhipsalian Halimeda species, as well as Udotea and Rhipocephalus. Extensive populations of other Halimeda species (opuntioids) occur at greater depths on the cemented rocky escarpment, growing as drapes or vines rather than as upright thalli. These meadows and draperies are important sources of coarse-grained carbonate sediments. This is shown by (1) deeper bank-edge sediments (30–60 m) containing considerably more Halimeda fragments than do the bank top, non-skeletal sands, and (2) the coarser fraction of slope sediments (down to 200 m) dominated by Halimeda plates, partly or extensively altered and internally cemented by magnesian calcite and aragonite. A transect across the bank margin from bank top (<10 m) to lower slope (300 m) provides a useful comparison for the locus of sediment production and accumulation. The production of Halimeda in these bank-edge habitats approximates that in the Great Barrier Reef or off Indonesia and Nicaragua in similar water depths. The apparent lack of thick sediment accumulation in WGBB compared to that seen elsewhere may reflect the high rates of downslope transport off Great Bahama Bank.  相似文献   

7.
Large areas of the inter-reefal seabed in the Great Barrier Reef are carpeted with vegetation composed almost entirely of the green calcareous alga Halineda. These meadows occur principally in the northern sections between 11°30 and 15°35S at depths of 20 to 40 m, but there are also some in the central and southern sections, where they have been found at depths down to 96 m. The vegetation is dominated by the same sprawling Halimeda species that are common on coral reefs in this region. However, on reefs these species grow on solid substrata, not soft sediments like the Halimeda-rich gravels that underlie the meadows. A total of 12 Halimeda species, together with two Udotea and one Penicillus species, are characteristic components of the shallow meadows. Below 50 m depth, species composition is restricted to only two major components. One, H. copiosa, is also important shallower, but the other is an unusually large and heavily calcified form of H. fragilis, a species that is normally a minor, fragile component of the shallow meadows. The maximum biomass found in these meadows was 4637 gm2 of calcareous algae, although the thean for vegetated areas was 525 gm2. These meadows are confined to the nutrient-depleted waters of the outer continental shelf just inside the outer barrier reefs, and are usually associated with distinct shoaling of the seabed caused by accumulation of thick deposits of calcareous Halimeda segments. The meadows are probably supported by very localized upwelling of nutrients from the adjacent Coral Sea onto the shelf, where they enrich the otherwise nutrient-depleted waters.Contribution No.367 from the Australian Institute of Marine Science  相似文献   

8.
Halimeda bioherms of the northern Great Barrier Reef   总被引:2,自引:0,他引:2  
The reefless tract directly behind the ribbon reefs on the outer shelf off Cooktown supports a luxuriant growth of Halimeda that, during the Holocene, has developed into bioherms. These mounded biodies of unconsolidated sediment have formed banks that vary in height between 2 and 20 m. Combined shallow, high-resolution seismic reflection profiles and side-scan sonar have diferentiated three areas of biohermal complexes behind the ribbon reefs of Cooktown. Observations by SCUBA and submersible plus the sedimentology of the bioherms indicate that they are in situ accumulations. Evidence from dating of cores suggests that the Halimeda bioherms began to grow about 10 000 years B.P. and their growth has continued to the present time, even though their tops are presently restricted to a depth of -20 m. It is suggested that the origin and morphology of the bioherms are related to a specific hydrodynamic phenomenon, involving jets of nutrient-rich, upwelled oceanic water intruding onto the outer shelf via the narrow passes between the ribbon reefs, and forming eddies behind the ribbons.  相似文献   

9.
The calcareous green algaHalimeda can be a substantial contributor to aragonite sediment in reef ecosystems. In contrast to coral aragonite, little is known about the trace and minor element composition ofHalimeda aragonite, so it is difficult to test oceanographic hypotheses about factors controlling its past growth. We investigated adapting trace element cleaning protocols for modern and HoloceneHalimeda aragonite, modern and HoloceneHalimeda trace and minor element compositions, and the potential utility ofHalimeda aragonite for paleoceanographic investigations. We successfully adapted and applied sample treatment protocols developed for measuring trace elements in coral aragonite (generally less than 500 y old) toHalimeda aragonite (modern to approximately 5000 y old in this study). ModernHalimeda aragonite from John Brewer Reef in the Central GBR had mean Cd/Ca ratios of 5.19 ± 1.68 nmol/mol forHalimeda micronesica and 2.35 ± 0.38 nmol/mol for three closely related species important in bioherm accumulationHalimeda copiosa, Halimeda hederacea, andHalimeda opuntia. Mn/Ca ratios, with means from 89–239 nmol/mol for these four species, showed both intra-and inter-specific variability. Sr/Ca ratios (10.9 ± O.1 mmol/mol) and Mg/Ca ratios (1.35 ± 0.26 mmol/mol) were similar for all samples. HoloceneHalimeda aragonite samples from cores of two bioherms in the northern GBR seemed well preserved on the basis of mineralogy and Sr/Ca and Mg/Ca ratios similar to those in modernHalimeda aragonite. Cd/Ca ratios (overall mean 0.96 ± 0.15 nmol/mol) were lower than those measured in the modernHalimeda from the central GBR location. However, Mn/Ca ratios in both cores were substantially higher than in modernHalimeda aragonite. While it may be possible to extract paleoceanographic information fromHalimeda aragonite, substantial care is needed to evaluate and avoid the effects of post-depositional alteration.  相似文献   

10.
Recruitment patterns of scleractinian corals were investigated at the Gneering Shoals, a coral-dominated rocky-reef south of the Great Barrier Reef, in subtropical Queensland. The density of recruits (mean of 0.8 to 6.3 recruits per tile (15 cm × 15 cm) pair from 4 sites) was the lowest ever recorded from six regions in tropical or subtropical eastern Australia that have been studied using directly comparable methods. Recruitment in summer was dominated by recruits from the Family Acroporidae, while corals from the Family Pocilloporidae recruited throughout the year. Recruits of massive corals andTurbinaria sp., which dominate the established coral communities, were absent. Possible explanations for the low recruitment rate in the region, include the depth of most sites (> 10m), competition for space with fouling organisms, and isolation, that is the failure of the south flowing East Australian Current to supply tropical larvae regularly from the Great Barrier Reef, 250 km to the north. The low coral recruitment rate at Gneering Shoals indicates that this region is unlikely to act as a stepping-stone for dispersal of tropical corals to more southern regions, which are more directly influenced by the East Australian Current.  相似文献   

11.
The sediments and calcareous organisms on the outer reefal shelf of the Central Region of the Great Barrier Reef were collected and observed by SCUBA diving and research vessel techniques (including underwater television) to understand the production and processes of deposition of the sediment. The carbonate grains are mainly sand and gravel size and solely of skeletal origin. Over the whole area the major CaCO3 producers, in order of decreasing importance are: benthic foraminiferans (chiefly Operculina, Amphistegina, Marginopora, Alveolinella and Cycloclypeus), the calcareous green alga Halimeda, molluscs and corals. Coral abundance is high only close to reefs and submerged rocky substrates. Benthic foraminiferal sands dominate the inter-reef areas i.e. the bulk of the shelf, and Halimeda gravels form an outer shelf band between 60 and 100 m depths. Seven distinct facies are recognised after quantitative analyses of the sediments. These are: A. Shelf edge slope (>120 m depth); B. Shelf edge (with rocky outcrops); C. Outer shelf with high Halimeda (>40%); D. Inter-reef I; E. Inter-reef II ( 100 m depth but >2% pelagics); F. Lee-ward reef talus wedge (<2 km from sea level reefs); G. Lagoonal.  相似文献   

12.
Observations were made of 33 species of brittlestars (3980 specimens) from specific substrata collected in four zones on the Belize Barrier Reef, Caribbean Sea. The body size of most species of brittlestars with planktonic larvae differs significantly among different substrata. Generally, individuals from the calcareous alga Halimeda opuntia are smallest, those found in corals (Porites porites, Madracis mirabilis, and Agaricia tenuifolia) are larger, and those from coral rubble are the largest. This suggests that brittlestars with planktonic larvae move to new microhabitats as they grow. In contrast, most brooding and fissiparous species are relatively small and their size-distributions are similar among all substrata. Halimeda harbours denser concentrations of brittlestars and more small and juvenile individuals than the other substrata. Juveniles of the brooding and fissiparous species are most common in Halimeda on the Back Reef whereas juveniles developing from planktonic larvae are most common in Halimeda patches in deeper water. Fissiparity and brooding may be means for individuals (genomes) of small, apomictic species to reach large size (and correspondingly high fecundities) in patchy microhabitats that select for small body sizes. Small brittlestar species and juveniles are most numerous in the microhabitats called refuge-substrata, such as Halimeda, which may repel predators and reduce environmental stress. Whether young brittlestars are concentrated in refuge-substrata through settlement behavior, migration, or differential survival remains unknown. Experiments revealed that coral polyps kill small brittlestars, perhaps accounting for the rarity of small and juvenile brittlestars in coral substrata.  相似文献   

13.
Heliopora coerulea (Alcyonaria, Coenothecalia), widespread since the Cretaceous, is today found in the Indo-Western Pacific between 25° N and 25° S but is uncommon throughout most of its range. Studies around its reported southern and eastern limits of distribution (Great Barrier Reef, Vanuatu, Fiji, Tonga, Western Samoa, Tuvalu, Gilbert Group) suggest that ocean temperature (a lower marginal isotherm of 22°C), duration of larval life-span, prevailing currents, and the geological and climatic history of isolated archipelagoes determine distribution. Heliopora was found to be far more abundant in the equatorial Central Pacific sites (Tuvalu and Gilbert growps) than in the Western Pacific (Great Barrier Reef, New Guinea, Solomon Islands, Ponape, Palau). Heliopora comprised up to 16% of beach sediments in Tuvalu atolls, and was the dominant coral (averaging 40% of substrate between 6 m and 10 m on reef slopes) in coral assemblages on Tarawa Atoll. From ecological studies in Tarawa it is suggested that competition from the more specialized and aggressive Scleractinia (particularly Acroporidae and Faviidae) is the major factor limiting abundance in the equatorial Western Pacific.  相似文献   

14.
The average biomass ofHalimeda per m2 of solid substratum increased progressively on a series of reefs situated at increasing distances from the shore in the central Great Barrier Reef. There was none on a reef close inshore, increasing to nearly 500 g m?2 total biomass (?90% calcium carbonate) on an oceanic atoll system in the Coral Sea. The biomass measured contained 13 species ofHalimeda but was dominated by only two species,H. copiosa andH. opuntia, except on the atoll whereH. minima was dominant. Three sand-dwelling species were also present but did not occur anywhere in substantial quantities. Growth rates of the dominant species were measured bv tagging individual branch tips. A mean value of 0.16 segments d?1 was recorded but 41% of the branch tips did not grow any new segments whilst only 1% grew more than one per day. The number of branch tips per unit biomass was very constant and has been used in conjunction with growth rates and biomass to calculate productivity rates, and thence sedimentation, in the lagoon of one of the reefs. Biomass doubling time of 15 d and production of 6.9 g dry wt m?2 d?1 are considerably higher than previously reported values forHalimeda vegetation and there was little seasonal change detected over a whole year. Those values indicate annual accretion of 184.9 g m?2 year?1 ofHalimeda segment debris over the entire lagoon floor (5.9 km2) of Davies Reef, equivalent to 0.13 mm year?1 due toHalimeda alone, or 1 m every 1,892 years when other contributions to that sediment are taken into account.  相似文献   

15.
The deep fore-reef at Enewetak has been examined from the submersible Makali'i. Green algae grow to about-150 m at photon flux densities of approximately 1 Em-2s-1. Halimeda cover is 50% at many sites down to-90 m. Halimeda populations are important within the zone of scleractinian corals down to about-65 m, while a Halimeda zone with low coral cover or lacking corals between-65 m and-150 m probably is an important source of reef carbonate. Halimedas of the deep fore-reef, like those of the lagoon, constitute an important structural component in reef building. Other calcareous green algae such as Tydemania are less important on the deep fore-reef, but growth of coralline red algae continues to over-200m. Halimeda diversity is high down to near the base of the euphotic zone.  相似文献   

16.
The dynamics of benthic microbial communities were examined within different functional zones (reef crest, reef flat, lagoon) of Davies Reef, central Great Barrier Reef, in winter. Bacterial numbers did not change significantly across the reef with a mean abundance of 1.3 (±0.6) x 109 cells g-1 DW of sediment. Bacterial production, measured as thymidine incorporation into DNA, ranged from 1.2 (±0.2) to 11.6 (±1.5) mg C m-2h-1 across the reef and was significantly lower in a reef crest basin than in the other zones. Bacterial growth rates () across the reef (0.05 to 0.33 g-1) correlated only with sediment organic carbon and nitrogen. Protozoan and meiofaunal densities varied by an order of magnitude across the reef and correlated with one or more sediment variables but not with bacterial numbers or growth rates. Nutrient flux rates were similar to those found at other reefs in the central and southern Great Barrier Reef and are significantly lower than rates measured in temperate sand communities. In the front lagoon, bioturbation and feeding acitivity by thalassinid shrimps (Callianassa spp.) negatively influenced microbial and meiofaunal communities with a net import of organic matter necessary to support the estimated rates of bacterial productivity. In lagoonal areas not colonized by shrimps, primary productivity (400–1100 mg C m-2d-1) from algal mats was sufficient to support bacterial growth. It is suggested that deposit-feeding macrobenthos such as thalassinid crustaceans play a major role in the tructuring and functioning of lower trophic groups (bacteria, microalgae, protozoa, meiofauna) in coral reef sedments, particularly in laggons.  相似文献   

17.
Spatial patterns in the abundance of the softsediment meiofauna and a predatory goby, Valenciennia longipinnis, were examined in the lagoon of One Tree Reef (Great Barrier Reef). The study provided a quantitative framework to assess the importance of physical factors on and predator prey interactions between the meiofauna and V.longipinnis. Patterns of abundance were examined at two spatial scales: among four habitats (100's of m apart) and among sites (10's of m apart) within habitats. Of the four major constituents of the meiofauna (harpacticoid copepods, nematodes, polychaetes and oligochaetes), gut analyses showed that harpacticoid copepods were the primary prey of V.longipinnis. Spatial patterns of meiofaunal abundance in the lagoon were taxon specific. Polychaetes and harpacticoid copepods exhibited significant differences among habitats. Within habitats, however, polychaetes exhibited significant differences between sites whereas copepods were uniformly distributed. Abundances of nematodes and oligochaetes did not differ between habitats. Densities of nematodes differed significantly between sites while the number of oligochaetes were similar at both spatial scales. V.longipinnis was more abundant in shallow habitats than in deep ones. This study suggests that sediment type may be an important factor influencing the distribution of both the goby and the meiofauna. V.longipinnis and two of the four meiofaunal taxa (harpacticoid copepods and polychaetes) were more abundant in the shallow habitat with fine-grained sediments. There was no significant difference between abundances of meiofaunal taxa in sites where V.longipinnis was present or absent. Overall, more fish occurred in the habitat which had the highest densities of harpacticoid copepods.  相似文献   

18.

Aim

Coral reef communities occurring in deeper waters have received little research effort compared to their shallow-water counterparts, and even such basic information as their location and extent are currently unknown throughout most of the world. Using the Great Barrier Reef as a case study, habitat suitability modelling is used to predict the distribution of deep-water coral reef communities on the Great Barrier Reef, Australia. We test the effectiveness of a range of geophysical and environmental variables for predicting the location of deep-water coral reef communities on the Great Barrier Reef.

Location

Great Barrier Reef, Australia.

Methods

Maximum entropy modelling is used to identify the spatial extent of two broad communities of habitat-forming megabenthos phototrophs and heterotrophs. Models were generated using combinations of geophysical substrate properties derived from multibeam bathymetry and environmental data derived from Bio-ORACLE, combined with georeferenced occurrence records of mesophotic coral communities from autonomous underwater vehicle, remotely operated vehicle and SCUBA surveys. Model results are used to estimate the total amount of mesophotic coral reef habitat on the GBR.

Results

Our models predict extensive but previously undocumented coral communities occurring both along the continental shelf-edge of the Great Barrier Reef and also on submerged reefs inside the lagoon. Habitat suitability for phototrophs is highest on submerged reefs along the outer-shelf and the deeper flanks of emergent reefs inside the GBR lagoon, while suitability for heterotrophs is highest in the deep waters along the shelf-edge. Models using only geophysical variables consistently outperformed models incorporating environmental data for both phototrophs and heterotrophs.

Main Conclusion

Extensive submerged coral reef communities that are currently undocumented are likely to occur throughout the Great Barrier Reef. High-quality bathymetry data can be used to identify these reefs, which may play an important role in resilience of the GBR ecosystem to climate change.  相似文献   

19.
Lord Howe Island, at 31°33S, supports the southern-most coral reef in the Indo-Pacific region, located approximately 150 and 200 km south of Elizabeth and Middleton Reefs and 1000 km south of the Great Barrier Reef (GBR). Systematic SCUBA searches in 1987 indicated that Acanthaster planci was present at 3 of 10 sites surveyed, at densities of up to 5 individuals ha-1. Further surveys in 1989 indicated that the population was increasing, with densities of 20–46 ha-1 recorded from 7 of 13 sites. The size structures of the 1987 and 1989 populations were suggestive of annual recruitment since 1985. Individuals larger than 25 cm diameter were gravid during both surveys, raising the possibility that the population may be self-seeding. Alternatively, the population may be maintained by larvae dispersed in the East Australian Current from the southern GBR or in eddies from Elizabeth and Middleton Reefs. This study provides the first records for distribution of 7 species of scleractinian coral at Lord Howe Is. Reef.  相似文献   

20.
Reef-building corals from shallow waters are known to contain a suite of water soluble compounds (collectively named S-320) which strongly absorb near-UV light. Compounds of this type have now been isolated from the Pacific staghor coral Acropora formosa and identified as a series of mycosporine-like amino acids including mycosporine-Gly (max=310nm), palythine (max=320nm) and palythinol (max=332nm). These compounds were separated and quantified by high-performance liquid chromatography. Serial extraction efficiencies were calculated using a simple formula which is derived herein. For 12-cm long coral branches collected from a depth of 3 m at Rib Reef, Great Barrier Reef, Australia (146° 53E, 18° 29S) the average concentrations of mycosporine-Gly, palythine, and palythinol were 37.8, 56.4 and 0.895 nmol per mg coral protein, respectively. The coral samples can be stored at-20°C for at least 144 days without degradation of the mycosporinelike amino acids.Contribution number 334 from the Australian Institute of Marine Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号