首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of CD95 and CD95 ligand in cancer   总被引:1,自引:0,他引:1  
CD95 (Fas/APO-1) and its ligand, CD95L, have long been viewed as a death receptor/death ligand system that mediates apoptosis induction to maintain immune homeostasis. In addition, these molecules are important in the immune elimination of virus-infected cells and cancer cells. CD95L was, therefore, considered to be useful for cancer therapy. However, major side effects have precluded its systemic use. During the last 10 years, it has been recognized that CD95 and CD95L have multiple cancer-relevant nonapoptotic and tumor-promoting activities. CD95 and CD95L were discovered to be critical survival factors for cancer cells, and were found to protect and promote cancer stem cells. We now discuss five different ways in which inhibiting or eliminating CD95L, rather than augmenting, may be beneficial for cancer therapy alone or in combination with standard chemotherapy or immune therapy.  相似文献   

3.
The mammalian target of rapamycin (mTOR) kinase occurs in mTOR complex 1 (mTORC1) and complex 2 (mTORC2), primarily differing by the substrate specificity factors raptor (in mTORC1) and rictor (in mTORC2). Both complexes are activated during human cytomegalovirus (HCMV) infection. mTORC1 phosphorylates eukaryotic initiation factor 4E (eIF4E)-binding protein (4E-BP1) and p70S6 kinase (S6K) in uninfected cells, and this activity is lost upon raptor depletion. In infected cells, 4E-BP1 and S6K phosphorylation is maintained when raptor or rictor is depleted, suggesting that either mTOR complex can phosphorylate 4E-BP1 and S6K. Studies using the mTOR inhibitor Torin1 show that phosphorylation of 4E-BP1 and S6K in infected cells depends on mTOR kinase. The total levels of 4E-BP1 and viral proteins representative of all temporal classes were lowered by Torin1 treatment and by raptor, but not rictor, depletion, suggesting that mTORC1 is involved in the production of all classes of HCMV proteins. We also show that Torin1 inhibition of mTOR kinase is rapid and most deleterious at early times of infection. While Torin1 treatment from the beginning of infection significantly inhibited translation of viral proteins, its addition at later time points had far less effect. Thus, with respect to mTOR's role in translational control, HCMV depends on it early in infection but can bypass it at later times of infection. Depletion of 4E-BP1 by use of short hairpin RNAs (shRNAs) did not rescue HCMV growth in Torin1-treated human fibroblasts as it has been shown to in murine cytomegalovirus (MCMV)-infected 4E-BP1(-/-) mouse embryo fibroblasts (MEFs), suggesting that during HCMV infection mTOR kinase has additional roles other than phosphorylating and inactivating 4E-BP1. Overall, our data suggest a dynamic relationship between HCMV and mTOR kinase which changes during the course of infection.  相似文献   

4.
5.
CD95/CD95L interactions and their role in autoimmunity   总被引:5,自引:0,他引:5  
CD95 (Fas/Apo-1) is a broadly expressed death receptor involved in a variety of physiological and pathological apoptotic processes. Since its discovery, defects in CD95/CD95L system have been proposed as major pathogenic factors responsible for impaired immunological tolerance to self antigens and autoimmunity. Later, analysis of altered sensitivity to CD95-induced apoptosis in cells targeted by the immune response has revealed an unexpected role for CD95 and CD95L in organ-specific autoimmunity. CD95 has been shown to be expressed and functional in virtually all cell types that are target of the organ-specific autoimmune response. Here we review some of the major findings concerning the role of CD95 in autoimmunity, in dysfunctions due to increased or decreased CD95-induced apoptosis.  相似文献   

6.
Apoptosis is a fundamental process that contributes to tissue homeostasis, immune responses, and development. The receptor CD95, also called Fas, is a member of the tumor necrosis factor receptor (TNF-R) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance, and various lineages of malignant cells exhibit loss-of-function mutations in this pathway; therefore, CD95 was initially classified as a tumor suppressor gene. However, more recent data indicate that in different pathophysiological contexts, this receptor can transmit non-apoptotic signals, promote inflammation, and contribute to carcinogenesis. A comparison with the initial molecular events of the TNF-R signaling pathway leading to non-apoptotic, apoptotic, and necrotic pathways reveals that CD95 is probably using different molecular mechanisms to transmit its non-apoptotic signals (NF-κB, MAPK, and PI3K). As discussed in this review, the molecular process by which the receptor switches from an apoptotic function to an inflammatory role is unknown. More importantly, the biological functions of these signals remain elusive.  相似文献   

7.
8.
Activation of the cell surface CD95 receptor triggers a cascade of signaling events, including assembly of the death-inducing signaling complex (DISC), that culminate in cellular apoptosis. In this study, we demonstrate a general requirement of receptor internalization for CD95 ligand-mediated DISC amplification, caspase activation and apoptosis in type I cells. Recruitment of DISC components to the activated receptor predominantly occurs after the receptor has moved into an endosomal compartment and blockade of CD95 internalization impairs DISC formation and apoptosis. In contrast, CD95 ligand stimulation of cells unable to internalize CD95 results in activation of proliferative Erk and NF-kappaB signaling pathways. Hence, the subcellular localization and internalization pathways of CD95 play important roles in controlling activation of distinct signaling cascades to determine divergent cellular fates.  相似文献   

9.
Protein modifications of death receptor pathways play a central role in the regulation of apoptosis. It has been demonstrated that O-glycosylation of TRAIL-receptor (R) is essential for sensitivity and resistance towards TRAIL-mediated apoptosis. In this study we ask whether and how glycosylation of CD95 (Fas/APO-1), another death receptor, influences DISC formation and procaspase-8 activation at the CD95 DISC and thereby the onset of apoptosis. We concentrated on N-glycostructure since O-glycosylation of CD95 was not found. We applied different approaches to analyze the role of CD95 N-glycosylation on the signal transduction: in silico modeling of CD95 DISC, generation of CD95 glycosylation mutants (at N136 and N118), modulation of N-glycosylation by deoxymannojirimycin (DMM) and sialidase from Vibrio cholerae (VCN). We demonstrate that N-deglycosylation of CD95 does not block DISC formation and results only in the reduction of the procaspase-8 activation at the DISC. These findings are important for the better understanding of CD95 apoptosis regulation and reveal differences between apoptotic signaling pathways of the TRAIL and CD95 systems.  相似文献   

10.
Human cytomegalovirus (HCMV) reactivation is a common complication after liver transplantation (LT). Here, we investigated whether human leukocyte antigen (HLA)-matching was related to HCMV infection and subsequent graft failure after LT for hepatitis B virus cirrhosis. This retrospective study reviewed 91 LT recipients. All the patients were grouped according to HLA-A, HLA-B, and HLA-DR locus matching. Clinical data were collected, including complete HLA-typing, HCMV viremia, graft failure, and the time of HCMV viremia. HLA typing was performed using a sequence-specific primer-polymerase chain reaction kit. HCMV was detected by pp65 antigenemia using a commercial kit. The incidence of HCMV infection post-LT was 81.32%. Graft failure was observed in 16 of 91 (17.6%) patients during the 4-year study. The incidence of HCMV viremia was 100% (5/5), 91.4% (32/35), and 72.5% (37/51) in HLA-A two locus, one locus, and zero locus compatibility, respectively. Nevertheless, the degree of the HLA-A, HLA-B, or HLA-DR match did not influence the time of HCMV viremia, graft failure, or the time of graft failure after a diagnosis of HCMV viremia (all P > 0.05). An interesting discovery was that the risk of HCMV viremia tended to be higher in patients with better HLA-A compatibility. Graft failure, time of HCMV viremia, and graft failure after a diagnosis of HCMV viremia appear to be independent of HLA allele compatibility.  相似文献   

11.
Human cytomegalovirus (HCMV) infection causes a rapid, progressive disruption of the host cell cytoskeleton that correlates with actin depolymerization. Whole-mount (3D) electron microscopy was used to analyze the cytoskeleton of uninfected and HCMV-infected human lung fibroblast cells. Within 2 min of HCMV infection, localized areas of cytoskeletal disruption were observed. Disruption extended throughout the cytoplasm during the ensuing 45 to 90 min of infection and resulted in generalized cytoskeletal disorganization. Actin depolymerization occurred, as indicated by an increase in DNase I inhibition and alteration in the fluorescence pattern with rhodamine-conjugated phalloidin. Thus, actin appears to be the primary cytoskeletal target involved during HCMV infection. Fractionation of the virus seed inoculum showed that development of DNase I inhibitory activity in infected cells was associated only with the virus-containing fractions. Cytochalasin B treatment at early times of HCMV infection stimulated progeny virus production. This study demonstrates that rapid cytoskeletal disruption occurs during early periods of HCMV infection and indicates that actin depolymerization facilitates viral infectivity.  相似文献   

12.
13.
14.
Antiviral defense in the liver during acute infection with the hepatotropic virus murine cytomegalovirus (MCMV) involves complex cytokine and cellular interactions. However, the mechanism of viral sensing in the liver that promotes these cytokine and cellular responses has remained unclear. Studies here were undertaken to investigate the role of nucleic acid-sensing Toll-like receptors (TLRs) in initiating antiviral immunity in the liver during infection with MCMV. We examined the host response of UNC93B1 mutant mice, which do not signal properly through TLR3, TLR7 and TLR9, to acute MCMV infection to determine whether liver antiviral defense depends on signaling through these molecules. Infection of UNC93B1 mutant mice revealed reduced production of systemic and liver proinflammatory cytokines including IFN-α, IFN-γ, IL-12 and TNF-α when compared to wild-type. UNC93B1 deficiency also contributed to a transient hepatitis later in acute infection, evidenced by augmented liver pathology and elevated systemic alanine aminotransferase levels. Moreover, viral clearance was impaired in UNC93B1 mutant mice, despite intact virus-specific CD8+ T cell responses in the liver. Altogether, these results suggest a combined role for nucleic acid-sensing TLRs in promoting early liver antiviral defense during MCMV infection.  相似文献   

15.
Cytomegalovirus infections are severe and frequent after BMT. This study included 34 bone marrow transplant recipients (23 aplastic anaemias and 11 leukaemias), their marrow donors and 125 related or non related normal controls. Assays were performed before transplantation and every 30 days between D 0 and D 90, and then every six months. They included detection of CMV induced lymphocyte proliferation in vitro, CMV antibody determinations by complement fixation and reverse haemagglutination, viraemia and/or viruria. Similarly, cellular immunity to mitogens and to other specific antigens was evaluated. During the period of study, 22 patients developed CMV infection. The diagnostic was confirmed by virus isolation from the 12th to the 96th day after the graft. Development of positive CMV proliferation test occurred from the 9th to the 84th day after virus isolation (30 to 120th day after the graft). In one case, the CMV infection was only proved by the lymphocyte proliferation to CMV in vitro and only 60 days later by viruria and 105 days later by detection of CMV antibodies. For the other 12 patients (7 aplasies and 5 leukaemias) and 10 of their bone marrow donors, no CMV infection was proved, before or after transplant, by any of the assays performed. By selecting a donor without previous CMV infection, we hope to reduce the incidence of CM infection in recipients.  相似文献   

16.
 CD38 is a leukocyte activation antigen and ectoenzyme [NAD(P)+ glycohydrolase; EC 3.2.2.6] involved in numerous immune functions. The human CD38 gene is complex [eight exons, >80 kilobases (kb) long] located on Chromosome 4p15, and part of the eukaryotic NAD+ glycohydrolase/ADP-ribosyl cyclase gene family. Because of the increasing relevance of the CD38 molecule in the host immune response to infectious, tumoral, and metabolic diseases, we investigated the genetic variability and linkage of the human CD38 locus. We report that (1) the restriction endonuclease Pvu II identifies a bi-allelic polymorphism here defined as formed by the alleles CD38 * A (12 kb) and CD38 * B (9/2.5 kb); (2) their frequency in the healthy Italian Caucasian population is 14% and 86%, respectively; (3) the polymorphic Pvu II site is located at the 5′ end of the first intron of the CD38 gene; (4) in conjunction with the polymorphic site, we identified a 900 base pair CpG island associated with the CD38 gene, with two potential Sp1 binding sites; (5) the CpG island may play a role in the regulation of CD38 expression and is hypomethylated in various cell lines; (6) by pulsed-field gel electrophoresis we show that CD38 and its paralogue, the bone-marrow stromal cell antigen BST-1 (CD157), map to the same 800 kb Avi II fragment, indicating that the two human ecto-NADase genes are closely linked. Received: 16 December 1998 / Revised: 26 January 1999  相似文献   

17.
To address the role of CD1d in mucosal immune regulation in bacterial infection, we infected CD1d KO mice with Listeria monocytogenes (Lm). A higher systemic bacterial burden associated with inflammatory lymphocytic infiltrations within the intestine was found in CD1d KO compared with wild type (WT) mice. Lm induced strong IFN-gamma mRNA expression in the liver of WT and the intestine of CD1d KO mice, thus demonstrating the dual, opposing immune activities of IFN-gamma in Lm infection that is dependent on CD1d and/or NKT cells. Analysis of hepatic T cell population demonstrated a reduction of NK1.1(+)TCRbeta+ cells in both mice, followed by recovery only in WT mice. Last, the proportion of alpha4beta1 integrin on lung lymphocytes from CD1d KO was dramatically increased compared with WT mice. Thus, the absence of CD1d resulted in increased susceptibility towards Listeria infection, induced changes in NKT cells, and increased trafficking of alpha4beta1 molecule to inflamed lung.  相似文献   

18.
19.
Killer cell lectin-like receptor G1 (KLRG1) is one of several inhibitory killer cell lectin-like receptors expressed by NK cells and T lymphocytes, mainly CD8(+) effector/memory cells that can secrete cytokines but have poor proliferative capacity. Using multiparameter flow cytometry, we studied KLRG1 expression on CD8(+) T cells specific for epitopes of CMV, EBV, influenza, and HIV. Over 92% of CD8(+) cells specific for CMV or EBV expressed KLRG1 during the latent stage of these chronic infections. CD8(+) T cell cells specific for HIV epitopes were mostly (72-89%) KLRG1(+), even though not quite at the level of predominance noted with CMV or EBV. Lower frequency of KLRG1 expression was observed among CD8(+) cells specific for influenza (40-73%), a resolved infection without a latent stage. We further observed that CD8(+) cells expressing CD57, a marker of replicative senescence, also expressed KLRG1; however, a population of CD57(-)KLRG1(+) cells was also identified. This population may represent a "memory" phenotype, because they also expressed CD27, CD28, CCR7, and CD127. In contrast, CD57(+)KLRG1(+) cells did not express CD27, CD28, and CCR7, and expressed CD127 at a much lower frequency, indicating that they represent effector cells that are truly terminally differentiated. The combination of KLRG1 and CD57 expression might thus aid in refining functional characterization of CD8(+) T cell subsets.  相似文献   

20.
Human cytomegalovirus (HCMV) is the major viral cause of morbidity in immune compromised patients and of pre- and perinatal pathology in newborns. The clinical manifestations are highly variable and the principles which govern these differences cannot be understood without detailed knowledge on tissue specific aspects of HCMV infection. For decades the role of individual cell types during cytomegalovirus infection and disease has been discussed. The pathogenesis of mouse cytomegalovirus (MCMV) mirrors the human infection in many aspects. Although only MCMV infection is studied extensively at the level of organs, the relative contribution of specific cell types to viral pathogenesis in vivo has remained enigmatic. Here we discuss new approaches based on the cre/loxP-system to label nascent virus progeny or to lift a replication block. The salient aspect of this technique is the change of viral genome properties selectively in cells that express cre during infection in vivo. This allowed us to study the role of endothelial cells and hepatocytes for virus dissemination and will permit detailed studies on innate and adaptive immune responses to CMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号