首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Tsutsui Y  Morishita T  Iwasaki H  Toh H  Shinagawa H 《Genetics》2000,154(4):1451-1461
To identify Schizosaccharomyces pombe genes involved in recombination repair, we identified seven mutants that were hypersensitive to both methyl methanesulfonate (MMS) and gamma-rays and that contained mutations that caused synthetic lethality when combined with a rad2 mutation. One of the mutants was used to clone the corresponding gene from a genomic library by complementation of the MMS-sensitive phenotype. The gene obtained encodes a protein of 354 amino acids whose sequence is 32% identical to that of the Rad57 protein of Saccharomyces cerevisiae. An rhp57 (RAD57 homolog of S. pombe) deletion strain was more sensitive to MMS, UV, and gamma-rays than the wild-type strain and showed a reduction in the frequency of mitotic homologous recombination. The MMS sensitivity was more severe at lower temperature and was suppressed by the presence of a multicopy plasmid bearing the rhp51 gene. An rhp51 rhp57 double mutant was as sensitive to UV and gamma-rays as an rhp51 single mutant, indicating that rhp51 function is epistatic to that of rhp57. These characteristics of the rhp57 mutants are very similar to those of S. cerevisiae rad57 mutants. Phylogenetic analysis suggests that Rhp57 and Rad57 are evolutionarily closest to human Xrcc3 of the RecA/Rad51 family of proteins.  相似文献   

4.
A new DNA repair gene from Schizosaccharomyces pombe with homology to RecA was identified and characterized. Comparative analysis showed highest similarity to Saccharomyces cerevisiae Rad55p. rhp55(+) (rad homologue pombe 55) encodes a predicted 350-amino-acid protein with an M(r) of 38,000. The rhp55Delta mutant was highly sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and, to a lesser degree, UV. These phenotypes were enhanced at low temperatures, similar to deletions in the S. cerevisiae RAD55 and RAD57 genes. Many rhp55Delta cells were elongated with aberrant nuclei and an increased DNA content. The rhp55 mutant showed minor deficiencies in meiotic intra- and intergenic recombination. Sporulation efficiency and spore viability were significantly reduced. Double-mutant analysis showed that rhp55(+) acts in one DNA repair pathway with rhp51(+) and rhp54(+), homologs of the budding yeast RAD51 and RAD54 genes, respectively. However, rhp55(+) is in a different epistasis group for repair of UV-, MMS-, or gamma-ray-induced DNA damage than is rad22(+), a putative RAD52 homolog of fission yeast. The structural and functional similarity suggests that rhp55(+) is a homolog of the S. cerevisiae RAD55 gene and we propose that the functional diversification of RecA-like genes in budding yeast is evolutionarily conserved.  相似文献   

5.
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin conjugating enzyme and is required for DNA repair, DNA-damage-induced mutagenesis and sporulation. Here, we show that RAD6 and the rhp6+ gene from the distantly related yeast Schizosaccharomyces pombe share a high degree of structural and functional homology. The predominantly acidic carboxyl-terminal 21 amino acids present in the RAD6 protein are absent in the rhp6(+)-encoded protein; otherwise, the two proteins are very similar, with 77% identical residues. Like rad6, null mutations of the rhp6+ gene confer a defect in DNA repair, UV mutagenesis and sporulation, and the RAD6 and rhp6+ genes can functionally substitute for one another. These observations suggest that functional interactions between RAD6 (rhp6+) protein and other components of the DNA repair complex have been conserved among eukaryotes.  相似文献   

6.
7.
8.
We have identified two fission yeast homologs of budding yeast Rad4 and human xeroderma pigmentosum complementation group C (XP-C) correcting protein, designated Rhp4A and Rhp4B. Here we show that the rhp4 genes encode NER factors that are required for UV-induced DNA damage repair in fission yeast. The rhp4A-deficient cells but not the rhp4B-deficient cells are sensitive to UV irradiation. However, the disruption of both rhp4A and rhp4B resulted in UV sensitivity that was greater than that of the rhp4A-deficient cells, revealing that Rhp4B plays a role in DNA repair on its own. Fission yeast has two pathways to repair photolesions on DNA, namely, nucleotide excision repair (NER) and UV-damaged DNA endonuclease-dependent excision repair (UVER). Studies with the NER-deficient rad13 and the UVER-deficient (Delta)uvde mutants showed the two rhp4 genes are involved in NER and not UVER. Assessment of the ability of the various mutants to remove cyclobutane pyrimidine dimers (CPDs) from the rbp2 gene locus indicated that Rhp4A is involved in the preferential repair of lesions on the transcribed DNA strand and plays the major role in fission yeast NER. Rhp4B in contrast acts as an accessory protein in non-transcribed strand (NTS) repair.  相似文献   

9.
The RAD3 gene of Saccharomyces cerevisiae is required for excision repair and is essential for cell viability. RAD3 encoded protein possesses a single stranded DNA-dependent ATPase and DNA and DNA.RNA helicase activities. Mutational studies have indicated a requirement for the RAD3 helicase activities in excision repair. To examine the extent of conservation of structure and function of RAD3 during eukaryotic evolution, we have cloned the RAD3 homolog, rhp3+, from the distantly related yeast Schizosaccharomyces pombe. RAD3 and rhp3+ encoded proteins are highly similar, sharing 67% identical amino acids. We show that like RAD3, rhp3+ is indispensable for excision repair and cell viability, and our studies indicate a requirement of the putative rhp3+ DNA helicase activity in DNA repair. We find that the RAD3 and rhp3+ genes can functionally substitute for one another. The level of complementation provided by the rhp3+ gene in S.cerevisiae rad3 mutants or by the RAD3 gene in S.pombe rhp3 mutants is remarkable in that both the excision repair and viability defects in both yeasts are restored to wild type levels. These observations suggest a parallel evolutionary conservation of other protein components with which RAD3 interacts in mediating its DNA repair and viability functions.  相似文献   

10.
A functional homolog (rhp23) of human HHR23A and Saccharomyces cerevisiae RAD23 was cloned from the fission yeast Schizosaccharomyces pombe and characterized. Consistent with the role of Rad23 homologs in nucleotide excision repair, rhp23 mutant cells are moderately sensitive to UV light but demonstrate wild-type resistance to γ-rays and hydroxyurea. Expression of the rhp23, RAD23 or HHR23A cDNA restores UV resistance to the mutant, indicating that rhp23 is a functional homolog of the human and S.cerevisiae genes. The rhp23::ura4 mutation also causes a delay in the G2 phase of the cell cycle which is corrected when rhp23, RAD23 or HHR23A cDNA is expressed. Rhp23 is present throughout the cell but is located predominantly in the nucleus, and the nuclear levels of Rhp23 decrease around the time of S phase in the cell cycle. Rhp23 is ubiquitinated at low levels, but overexpression of the rhp23 cDNA induces a large increase in ubiquitination of other proteins. Consistent with a role in protein ubiquitination, Rhp23 binds ubiquitin, as determined by two-hybrid analysis. Thus, the rhp23 gene plays a role not only in nucleotide excision repair but also in cell cycle regulation and the ubiquitination pathways.  相似文献   

11.
A new Schizosaccharomyces pombe mutant (rad32) which is sensitive to gamma and UV irradiation is described. Pulsed field gel electrophoresis of DNA from irradiated cells indicates that the rad32 mutant, in comparison to wild type cells, has decreased ability to repair DNA double strand breaks. The mutant also undergoes decreased meiotic recombination and displays reduced stability of minichromosomes. The rad32 gene has been cloned by complementation of the UV sensitive phenotype. The gene, which is not essential for cell viability and is expressed at a moderate level in mitotically dividing cells, has significant homology to the meiotic recombination gene MRE11 of Saccharomyces cerevisiae. Epistasis analysis indicates that rad32 functions in a pathway which includes the rhp51 gene (the S.pombe homologue to S.cerevisiae RAD51) and that cells deleted for the rad32 gene in conjunction with either the rad3 deletion (a G2 checkpoint mutation) or the rad2 deletion (a chromosome stability and potential nucleotide excision repair mutation) are not viable.  相似文献   

12.
13.
The Schizosaccharomyces pombe homologue of Mre11, Rad32, is required for repair of UV- and ionising radiation-induced DNA damage and meiotic recombination. In this study we have investigated the role of Rad32 and other DNA damage response proteins in non-homologous end joining (NHEJ) and telomere length maintenance in S.pombe. We show that NHEJ in S.pombe occurs by an error-prone mechanism, in contrast to the accurate repair observed in Saccharomyces cerevisiae. Deletion of the rad32 gene results in a modest reduction in NHEJ activity and the remaining repair events that occur are accurate. Mutations in two of the phosphoesterase motifs in Rad32 have no effect on the efficiency or accuracy of end joining, suggesting that the role of Rad32 protein may be to recruit another nuclease(s) for processing during the end joining reaction. We also analysed NHEJ in other DNA damage response mutants and showed that the checkpoint mutant rad3-d and two recombination mutants defective in rhp51 and rhp54 (homologues of S.cerevisiae RAD51 and RAD54, respectively) are not affected. However disruption of rad22, rqh1 and rhp9 / crb2 (homologues of the S.cerevisiae RAD52, SGS1 and RAD9 genes) resulted in increased NHEJ activity. Telomere lengths in the rad32, rhp9 and rqh1 null alleles were reduced to varying extents intermediate between the lengths observed in wild-type and rad3 null cells.  相似文献   

14.
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and gamma rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1Delta mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51.  相似文献   

15.
We have examined the genetic requirements for efficient repair of a site-specific DNA double-strand break (DSB) in Schizosaccharomyces pombe. Tech nology was developed in which a unique DSB could be generated in a non-essential minichromosome, Ch(16), using the Saccharomyces cerevisiae HO-endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion. We found that the homologous recombination (HR) genes rhp51(+), rad22A(+), rad32(+) and the nucleotide excision repair gene rad16(+) were required for efficient interchromosomal gene conversion. Further, DSB-induced cell cycle delay and efficient HR required the DNA integrity checkpoint gene rad3(+). Rhp55 was required for interchromosomal gene conversion; however, an alternative DSB repair mechanism was used in an rhp55Delta background involving ku70(+) and rhp51(+). Surprisingly, DSB-induced minichromosome loss was significantly reduced in ku70Delta and lig4Delta non-homologous end joining (NHEJ) mutant backgrounds compared with wild type. Furthermore, roles for Ku70 and Lig4 were identified in suppressing DSB-induced chromosomal rearrangements associated with gene conversion. These findings are consistent with both competitive and cooperative interactions between components of the HR and NHEJ pathways.  相似文献   

16.
J Qiu  M X Guan  A M Bailis    B Shen 《Nucleic acids research》1998,26(13):3077-3083
Two closely related genes, EXO1 and DIN 7, in the budding yeast Saccharomyces cerevisiae have been found to be sequence homologs of the exo1 gene from the fission yeast Schizosaccharomyces pombe . The proteins encoded by these genes belong to the Rad2/XPG and Rad27/FEN-1 families, which are structure-specific nucleases functioning in DNA repair. An XPG nuclease deficiency in humans is one cause of xeroderma pigmentosum and those afflicted display a hypersensitivity to UV light. Deletion of the RAD2 gene in S. cerevisiae also causes UV hypersensitivity, due to a defect in nucleotide excision repair (NER), but residual UV resistance remains. In this report, we describe evidence for the residual repair of UV damage to DNA that is dependent upon Exo1 nuclease. Expression of the EXO1 gene is UV inducible. Genetic analysis indicates that the EXO1 gene is involved in a NER-independent pathway for UV repair, as exo1 rad2 double mutants are more sensitive to UV than either the rad2 or exo1 single mutants. Since the roles of EXO1 in mismatch repair and recombination have been established, double mutants were constructed to examine the possible relationship between the role of EXO1 in UV resistance and its roles in other pathways for repair of UV damaged DNA. The exo1 msh2 , exo1 rad51 , rad2 rad51 and rad2 msh2 double mutants were all more sensitive to UV than their respective pairs of single mutants. This suggests that the observed UV sensitivity of the exo1 deletion mutant is unlikely to be due to its functional deficiencies in MMR, recombination or NER. Further, it suggests that the EXO1 , RAD51 and MSH2 genes control independent mechanisms for the maintenance of UV resistance.  相似文献   

17.
Rhp14 of Schizosaccharomyces pombe is homologous to human XPA and Saccharomyces cerevisiae Rad14, which act in nucleotide excision repair of DNA damages induced by ultraviolet light and chemical agents. Cells with disrupted rhp14 were highly sensitive to ultraviolet light, and epistasis analysis with swi10 (nucleotide excision repair) and rad2 (Uve1-dependent ultraviolet light damage repair pathway) revealed that Rhp14 is an important component of nucleotide excision repair for ultraviolet light-induced damages. Moreover, defective rhp14 caused instability of a GT repeat, similar to swi10 and synergistically with msh2 and exo1. Recombinant Rhp14 with an N-terminal hexahistidine tag was purified from Escherichia coli. Complementation studies with a rhp14 mutant demonstrated that the tagged Rhp14 is functional in repair of ultraviolet radiation-induced damages and in mitotic mutation avoidance. In bandshift assays, Rhp14 showed a preference to substrates with mismatched and unpaired nucleotides. Similarly, XPA bound more efficiently to C/C, A/C, and T/C mismatches than to homoduplex DNA. Our data show that mismatches and loops in DNA are substrates of nucleotide excision repair. Rhp14 is likely part of the recognition complex but alone is not sufficient for the high discrimination of nucleotide excision repair for modified DNA.  相似文献   

18.
19.
A new DNA repair gene from fission yeast Schizosaccharomyces pombe rlp1+ (RecA-like protein) has been identified. Rlp1 shows homology to RecA-like proteins, and is the third S. pombe Rad51 paralog besides Rhp55 and Rhp57. The new gene encodes a 363 aa protein with predicted Mr of 41,700 and has NTP-binding motif. The rlp1Delta mutant is sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and camptothecin (CPT), although to a lesser extent than the deletion mutants of rhp55+ and rhp51+ genes. In contrast to other recombinational repair mutants, the rlp1Delta mutant does not exhibit sensitivity to UV light and mitomycin C (MMC). Mitotic recombination is moderately reduced in rlp1 mutant. Epistatic analysis of MMS and IR-sensitivity of rlp1Delta mutant indicates that rlp1+ acts in the recombinational pathway of double-strand break (DSB) repair together with rhp51+, rhp55+, and rad22+ genes. Yeast two-hybrid analysis suggests that Rlp1 may interact with Rhp57 protein. We propose that Rlp1 have an accessory role in repair of a subset of DNA damage induced by MMS and IR, and is required for the full extent of DNA recombination and cell survival under condition of a replication fork collapse.  相似文献   

20.
J Willson  S Wilson  N Warr    F Z Watts 《Nucleic acids research》1997,25(11):2138-2146
Checkpoint controls exist in eukaryotic cells to ensure that cells do not enter mitosis in the presence of DNA damage or unreplicated chromosomes. In Schizosaccharomyces pombe many of the checkpoint genes analysed to date are required for both the DNA damage and the replication checkpoints, an exception being chk1 . We report here on the characterization of nine new methylmethane sulphonate (MMS)-sensitive S.pombe mutants, one of which is defective in the DNA damage checkpoint but not the replication checkpoint. We have cloned and sequenced the corresponding gene. The predicted protein is most similar to the Saccharomyces cerevisiae Rad9 protein, having 46% similarity and 26% identity. The S.pombe protein, which we have named Rhp9 (Rad9 homologue in S. pombe) on the basis of structural and phenotypic similarity, also contains motifs present in BRCA1 and 53BP1. Deletion of the gene is not lethal and results in a DNA damage checkpoint defect. Epistasis analysis with other S.pombe checkpoint mutants indicates that rhp9 acts in a process involving the checkpoint rad genes and that the rhp9 mutant is phenotypically very similar to chk1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号