首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 830 毫秒
1.
The structural relationships among human alkaline phosphatase isoenzymes from placenta, bone, kidney, liver and intestine were investigated by using three criteria. 1. Immunochemical characterization by using monospecific antisera prepared against either the placental isoenzyme or the liver isoenzyme distinguishes two antigenic groups: bone, kidney and liver isoenzymes cross-react with anti-(liver isoenzyme) serum, and the intestinal and placental isoenzymes cross-react with the anti-(placental isoenzyme) antiserum. 2. High-resolution two-dimensional electrophoresis of the 32P-labelled denatured subunits of each enzyme distinguishes three groups of alkaline phosphatase: (a) the liver, bone and kidney isoenzymes, each with a unique isoelectric point in the native form, can be converted into a single form by treatment with neuraminidase; (b) the placental isoenzyme, whose position also shifts after removal of sialic acid; and (c) the intestinal isoenzyme, which is distinct from all other phosphatases and is unaffected by neuraminidase digestion. 3. Finally, we compare the primary structure of each enzyme by partial proteolytic-peptide 'mapping' in dodecyl sulphate/polyacrylamide gels. These results confirm the primary structural identity of liver and kidney isoenzymes and the non-identity of the placental and intestinal forms. These data provide direct experimental support for the existence of at least three alkaline phosphatase genes.  相似文献   

2.
3.
SW-620, a continuous cell line derived from a poorly differentiated human colon carcinoma, produces two alkaline phosphatases. Under basal conditions the heat-stable, term-placental is the major isoenzyme and the heat-labile, liver/bone/kidney form represents a minor component. Exposing SW-620 cells to sodium butyrate causes induction of increased levels of activity accompanied by a striking shift in isoenzyme distribution not observed heretofore. The activity increase is accounted for entirely by augmentation of the liver/bone/kidney isoenzyme, with the term-placental form not being affected. Two other known alkaline phosphatase inducers, prednisolone and hyperosmolality, do not influence specific activity and isoenzyme distribution. The preferential induction of the liver/bone/kidney form of alkaline phosphatase in SW-620 cells may reflect a butyrate-elicited expression of a more differentiated state.  相似文献   

4.
5.
The alkaline phosphatases (EC 3.1.3.1) are determined by at least three gene loci, which can be sharply distinguished one from another by their sensitivity to inhibition with various amino acids and peptides and by ther-mostability. Alkaline phosphatase is present in the brains of guinea pig, rat, mouse, hamster, squirrel, rabbit, cat, sheep, cow, tamarin, baboon, and man. The gene locus coding for alkaline phosphatase in all these brains is the liver/ bone/kidney locus, as indicated by thermostability studies and by inhibition studies with L-phenylalanine, L-homoarginine, and L-phenylalanylglycylglycine. The average brain alkaline phosphatase activity is about 35% of the average for the livers and only 7.2% and 4.4% of the average kidney and placental activities, respectively. During growth and development, brain alkaline phosphatase activity decreases in the mammals studied. The amount of change is tissue- and species-dependent.  相似文献   

6.
Expression of intestinal alkaline phosphatase in human organs.   总被引:1,自引:0,他引:1  
Human intestinal alkaline phosphatase was immunohistochemically identified and localized in the pancreas, liver and kidney by use of a monoclonal antibody specific for intestinal alkaline phosphatase isozyme and by amplified biotin-streptavidin staining. In all the examined organs, the intestinal isozyme was found to be localized in the epithelial cells of ducts: bile ducts in the liver, distal convoluted tubules and collecting tubules in the kidney and ducts in the secretory epithelium in the pancreas. In the liver the antibody also stained some sinus-lining cells. In all the examined organs the endothelial cells of the capillaries and some vessels were stained. By use of immunoelectron microscopy, intestinal alkaline phosphatase was, as expected, found to be localized to the microvillar region of the small intestine. The isozyme was abundantly expressed in the apical area of the microvilli and in membrane remnants in the fuzzy coat. Capillaries and vessels in the submucosa were also stained, as well as small vesicles in the endothelial cells. The present investigation demonstrates the expression and localization of the intestinal alkaline phosphatase in several organs, though previously believed to be expressed only in the intestine.  相似文献   

7.
Human intestinal alkaline phosphatase was immunohistochemically identified and localized in the pancreas, liver and kidney by use of a monoclonal antibody specific for intestinal alkaline phosphatase isozyme and by amplified biotin-streptavidin staining. In all the examined organs, the intestinal isozyme was found to be localized in the epithelial cells of ducts: bile ducts in the liver, distal convoluted tubules and collecting tubules in the kidney and ducts in the secretory epithelium in the pancreas. In the liver the antibody also stained some sinus-lining cells. In all the examined organs the endothelial cells of the capillaries and some vessels were stained. By use of immunoelectron microscopy, intestinal alkaline phosphatase was, as expected, found to be localized to the microvillar region of the small intestine. The isozyme was abundantly expressed in the apical area of the microvilli and in membrane remnants in the fuzzy coat. Capillaries and vessels in the submucosa were also stained, as well as small vesicles in the endothelial cells. The present investigation demonstrates the expression and localization of the intestinal alkaline phosphatase in several organs, though previously believed to be expressed only in the intestine.  相似文献   

8.
Two forms of intestinal alkaline phosphatase have been recognized in humans. They are very similar in a number of biochemical and immunologic characteristics, but the exact genetic relationship between them remains unclear. To further study this problem, six monoclonal antibodies and a polyclonal rabbit antiserum to human fetal intestinal alkaline phosphatase have been produced. All of the monoclonal antibodies and the rabbit antiserum crossreact with adult intestinal alkaline phosphatase and with the intestinal-like alkaline phosphatase found in D98/AH-2 human tissue-culture cells. Four of the monoclonal antibodies and the rabbit antiserum crossreact with placental alkaline phosphatase, while none of the antibodies or the antiserum recognize liver or kidney alkaline phosphatase. Four of the monoclonal antibodies can distinguish between adult and fetal intestinal alkaline phosphatase in electrophoretic titration-binding studies, with the relative binding of adult enzyme being significantly greater than that of the fetal enzyme in each case. One of these antibodies, which also reacts with placental alkaline phosphatase, can distinguish the type 3 allelic variant of the placental enzyme from types 1 and 2. This indicates that the antibody detects a structural difference in the protein moiety of one of the allelic forms of the enzyme. These data suggest that adult and fetal intestinal alkaline phosphatases represent structurally distinct proteins, either encoded for by different genes or produced by differential processing of a common precursor molecule determined by a single gene.  相似文献   

9.
Rabbit liver and kidney tissues are known to produce an intestinal-like alkaline phosphatase (IAP-like enzyme) as a dominant isozyme, with a minor isozyme of tissue-unspecific type (UAP), unlike humans and other mammalians. We investigated immunohistochemically and biochemically these unique isozymes in the rabbit liver and bone, and compared them with the human isozyme. In rabbit liver, UAP was found to be localized only in the apical part of the membrane of cells lining the bile duct, whereas IAP-like enzyme was found in the sinusoidal membrane of hepatocytes. Rabbit liver UAP was separated from IAP-like enzyme by DEAE-cellulose column chromatography. Rabbit bone tissue contained only one UAP isozyme. The two UAPs were biochemically and physicochemically compared with human liver AP. Both UAPs reacted with an anti-human liver AP monoclonal antibody, not with an anti-human bone AP monoclonal antibody, indicating that both enzymes have the same antigenicity as human liver AP. Rabbit liver and bone UAPs had similar N-linked sugar-chain heterogeneities to the respective human enzymes. In addition, rabbit bone AP also had an O-linked sugar chain, as did human bone AP, unlike rabbit and human liver APs.  相似文献   

10.
W E Hoffmann  J L Dorner  H Morris 《Enzyme》1983,30(4):269-272
Two isoenzymes of alkaline phosphatase from horse kidney were identified by cellulose acetate electrophoresis. Horse kidney alkaline phosphatase was similar to horse intestinal alkaline phosphatase, in regard to both antigenicity and response to levamisole inhibition, but different from horse liver alkaline phosphatase. This study suggests that horse kidney alkaline phosphatase is an expression of the intestinal gene locus and not the hepatic gene locus.  相似文献   

11.
The alkaline phosphatases comprise a multigene enzyme family that hydolyze phosphate esters and are widely distributed in nature. Three main classes have been isolated from humans, the placental, intestinal, and liver/bone/kidney forms. We have mapped the placental and intestinal alkaline phosphatase genes to 2q34-q37 by using chromosomal in situ hybridization and a somatic-cell hybrid panel.  相似文献   

12.
Induced alkaline phosphatase has been extracted from osteosarcoma cells grown in tissue culture medium. The extracted enzyme has been purified. Using electrophoresis, inhibition studies, and thermolability, the enzyme was categorized as alkaline phosphatase of osseous origin. Antibodies to this enzyme were reacted against alkaline phosphatase extracted from cadaveric bone, liver, intestine, kidney and fresh placenta. The antibodies were specific against alkaline phosphatase of osseous origin only. No cross-reaction occurred with the enzyme extracted from other sources. The data derived from these studies indicate that alkaline phosphatase of bone is a specific enzyme of osseous tissue. Furthermore, the enzyme has specific antigenic and other properties which distinguish it from alkaline phosphatases from other sources. A model for in vitro production of a specific alkaline phosphatase of bone is presented.  相似文献   

13.
1. The effect of levamisole (LMS) on alkaline phosphatase (EC 3.1.3.1) and 5'-nucleotidase (EC 3.1.3.5) activities of bovine milk fat globule membranes (MFGM) was examined. 2. LMS inhibited MFGM alkaline phosphatase activity in a concentration-dependent manner with 50% inhibition produced by 49 +/- 23 microM LMS. 3. 5'-Nucleotidase was resistant to LMS inhibition with 30.9% inhibition produced by 10 mM LMS, the highest concentration tested. 4. LMS was an uncompetitive inhibitor of MFGM alkaline phosphatase with a Ki of 45 +/- 6 microM. 5. The extent of LMS inhibition of alkaline phosphatase was dependent on the substrate utilized in the assay. 6. The effect of LMS on bovine MFGM alkaline phosphatase was similar to LMS effects on other mammalian alkaline phosphatases of liver/kidney/bone/placental isoenzyme origin.  相似文献   

14.
1. Liver and bone alkaline phosphatase isoenzymes were solubilized with the zwitterionic detergent sulphobetaine 14, and purified to homogeneity by using a monoclonal antibody previously raised against a partially-purified preparation of the liver isoenzyme. Both purified isoenzymes had a specific activity in the range 1100-1400 mumol/min per mg of protein with a subunit Mr of 80,000 determined by SDS/polyacrylamide gel electrophoresis. Butanol extraction instead of detergent solubilization, before immunoaffinity purification of the liver enzyme, resulted in the same specific activity and subunit Mr. The native Mr of the sulphobetaine 14-solubilized enzyme was consistent with the enzyme being a dimer of two identical subunits and was higher than that of the butanol-extracted enzyme, presumably due to the binding of the detergent micelle. 2. Pure bone and liver alkaline phosphatase were used to raise further antibodies to the two isoenzymes. Altogether, 27 antibody-producing cell lines were cloned from 12 mice. Several of these antibodies showed a greater than 2-fold preference for bone alkaline phosphatase in the binding assay used for screening. No antibodies showing a preference for liver alkaline phosphatase were successfully cloned. None of the antibodies showed significant cross-reaction with placental or intestinal alkaline phosphatase. Epitope analysis of the 27 antibodies using liver alkaline phosphatase as antigen gave rise to six groupings, with four antibodies unclassified. The six major epitope groups were also observed using bone alkaline phosphatase as antigen. 3. Serum from patients with cholestasis contains soluble and particulate forms of alkaline phosphatase. The soluble serum enzyme had the same size and charge as butanol-extracted liver enzyme on native polyacrylamide-gel electrophoresis. Cellulose acetate electrophoresis separated the soluble and particulate serum alkaline phosphatases as slow- and fast-moving forms respectively. In the presence of sulphobetaine 14 all the serum enzyme migrated as the slow-moving form on cellulose acetate electrophoresis. Monoclonal anti-(alkaline phosphatase) immunoadsorbents did not bind the particulate form of alkaline phosphatase in cholestatic serum but bound the soluble form. In the presence of sulphobetaine 14 all the cholestatic serum alkaline phosphatase bound to the immunoadsorbents. 4. The electrophoretic and immunological data are consistent with both particulate and soluble forms of alkaline phosphatase in cholestatic serum being derived from the hepatocyte membrane.  相似文献   

15.
Some enzymes of isolated nuclei   总被引:3,自引:0,他引:3  
THE COMPOSITION OF ISOLATED NUCLEI AND CELL PREPARATIONS FROM TISSUES OF CALF, BEEF, HORSE, AND FOWL WAS STUDIED WITH RESPECT TO THE FOLLOWING COMPONENTS: 1. Liver and kidney arginase, catalase, and uricase; pancreatic lipase and amylase; cardiac muscle myoglobin; erythrocyte hemoglobin; intestinal alkaline phospharase. These are referred to as "special" components in view of their characteristically restricted distribution reflecting the differentiated nature of the tissues in question. 2. Esterase, beta-glucuronidase, alkaline and nucleotide phosphatases, adenosine deaminase, guanase, and nucleoside phosphorylase. These are enzymes of general distribution. The differences in nuclear composition noted with respect to the "special" components, together with the broad variability in nuclear activity found for enzymes of general distribution, led to the conclusion that nuclei are differentiated structures. The following distribution was observed: 1. "Special" components: Hemoglobin was found to be present in fowl and goose erythrocyte nuclei, but myoglobin was entirely absent from heart muscle nuclei; of the special enzymes listed, only catalase and arginase appeared to be concentrated in some of the nuclei. There was no significant nuclear concentration of lipase, amylase, uricase, or alkaline phosphatase. No simple relationship was found between the concentration of a special enzyme in a tissue and its activity in the corresponding nuclei. For example, arginase activity, which is high in mammalian liver and in fowl kidney, was found in liver, not kidney, nuclei. Similarly, catalase activity was demonstrated only in mammalian liver nuclei, although, in mammals, both liver and kidney are rich sources of this enzyme. 2. Enzymes of general distribution fell into three classes: (a) Those present in low concentrations, if at all, in the nuclei-alkaline phosphatase, the nucleotide phosphatases) and beta-glucuronidase. (b) Those present in nuclei in varying concentrations-esterase. (c) Those present in high proportions in most nuclei-adenosine deaminase, nucleoside phosphorylase, and guanase. The exceptionally low nuclear activity of intestinal mucosa with respect to these enzymes was discussed in relation to physiological considerations. The response of nuclei to changes in physiological state was demonstrated by experiments on starvation. The outstanding aspect of this response was a change in nuclear enzymatic activity opposing that observed in the cytoplasm. A comparison of fetal and adult mucosa cells led to the following tentative interpretation of the observed intracellular enzyme distribution: In cells tending to moribundity, as in those subjected to starvation, relative nuclear enzymatic activity falls. The occurrence of special enzymes in nuclei was considered in terms of differentiation, and the high nuclear concentration of the nucleoside-specific enzymes was interpreted in terms of general nuclear metabolic activity.  相似文献   

16.
Transforming growth factor beta (TGF beta) and 1,25-dihydroxyvitamin D3 (1,25D3), when added simultaneously to a human osteosarcoma cell line, MG-63, induce alkaline phosphatase activity 40-70-fold over basal levels, 6-7-fold over 1,25D3 treatment alone, and 15-20-fold over TGF beta treatment alone. TGF beta and 1,25D3 synergistically increased alkaline phosphatase specific activity in both matrix vesicles and plasma membrane isolated from the cultures, but the specific activity was greater in and targeted to the matrix vesicle fraction. Inhibitor and cleavage studies proved that the enzymatic activity was liver/bone/kidney alkaline phosphatase. Preincubation of MG-63 cells with TGF beta for 30 min before addition of 1,25D3 was sufficient for maximal induction of enzyme activity. Messenger RNA for liver/bone/kidney alkaline phosphatase was increased 2.1-fold with TGF beta, 1.7-fold with 1,25D3, and 4.8-fold with the combination at 72 h. Human alkaline phosphatase protein as detected by radioimmunoassay was stimulated only 6.3-fold over control levels with the combination. This combination of factors was tested for their effect on production of three other osteoblast cell proteins: collagen type I, osteocalcin, and fibronectin. TGF beta inhibited 1,25D3-induced osteocalcin production, whereas both factors were additive for fibronectin and collagen type I production. TGF beta appears to modulate the differentiation effects of 1,25D3 on this human osteoblast-like cell and thereby retain the cell in a non-fully differentiated state.  相似文献   

17.
1. Rabbit alkaline phosphatases (APs) clearly fused with the anti-human AP antibodies. In particular, fetal liver and kidney APs reacted slightly less with the anti-intestinal AP antibody as did adult enzymes, suggesting that intestinal AP-like isozyme is expressed at earlier stages of gestation in rabbit liver and kidney. 2. Immunohistochemical data indicated that intestinal AP-like isozyme in the kidney was mainly localized in the distal convoluted tubules and slightly in the proximal straight tubules, whereas liver/bone/kidney AP-like enzyme was found more in the glomeruli and interstitial capillary walls as a major component. 3. The sugar-chain heterogeneity of adult and fetal rabbit APs displayed organ-specificity as did of rat and human APs. Moreover, in fetal development, the expression of high-mannose type or hybrid type sugar chains precedes the expression of complex type sugar chains in fetal development.  相似文献   

18.
Summary Human kidney contains two antigenetically distinct isoenzymes of alkaline phosphatase (AP): a liver type and an intestinal type. The intestinal type AP is a minor component (1%–4%) of the total AP activity: it is found only in the cytoplasm. Both isoenzymes are located, found by an immunohistochemical technique, in the proximal convoluted tubules. This histochemical result eliminates the possibility that the low intestinal AP content in the kidney might only originate from blood vessels, where the intestinal isoenzyme was also found. The renal isoenzymes contribute to urinary AP. Intestinal type AP in urine of healthy persons, 10%–40% of the total AP activity, was found after high speed centrifugation predominantly in the supernatant (100,000 g), the liver type mainly in the sediment. Biochemical characterization revealed that intestinal type AP in kidney and urine are identical and differ from the isoenzyme of intestinal mucosa only slightly in their electrophoretic mobility.  相似文献   

19.
Liver, intestinal, and bone alkaline phosphatase isoenzymes were measured using heat stability and L-phenylalanine inhibition techniques in 78 patients on intermittent haemodialysis. Fifty-five patients had abnormalities in one or more of the isoenzymes. Changes in bone and intestinal alkaline phosphatase activities seemed to be related and raised liver isoenzyme activity was associated with the development of liver disease. Abnormal histological and radiological findings were better correlated with bone alkaline phosphatase levels than with total alkaline phosphatase, and serial estimations of bone isoenzyme activity were useful in assessing the response of renal osteodystrophy to treatment with a vitamin D analogue. Serum alkaline phosphatase isoenzyme measurement provides another useful and non-invasive index for monitoring metabolic bone disease in patients with chronic renal failure.  相似文献   

20.
The inhibition of enzymes by beryllium   总被引:4,自引:4,他引:0  
1. The action of beryllium on the following enzymes has been examined: alkaline phosphatase (Escherichia coli and kidney), acid phosphatase, phosphoprotein phosphatase, apyrase (potato), adenosine triphosphatase (liver nuclei, liver mitochondria, brain microsomes), glucose 6-phosphatase, polysaccharide phosphorylases a and b, phosphoglucomutase, hexokinase, phosphoglyceromutase, ribonuclease, A-esterase (rabbit serum), cholinesterase (horse serum), chymotrypsin. Alkaline phosphatase and phosphoglucomutase are inhibited by 1mum-beryllium sulphate whereas the other enzymes are largely unaffected by 1mm-beryllium sulphate. 2. Possible mechanisms for the inhibition of phosphoglucomutase and alkaline phosphatase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号