首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spider webs are made of silk, the properties of which ensure remarkable efficiency at capturing prey. However, remaining on, or near, the web exposes the resident spiders to many potential predators, such as ants. Surprisingly, ants are rarely reported foraging on the webs of orb-weaving spiders, despite the formidable capacity of ants to subdue prey and repel enemies, the diversity and abundance of orb-web spiders, and the nutritional value of the web and resident spider. We explain this paradox by reporting a novel property of the silk produced by the orb-web spider Nephila antipodiana (Walckenaer). These spiders deposit on the silk a pyrrolidine alkaloid (2-pyrrolidinone) that provides protection from ant invasion. Furthermore, the ontogenetic change in the production of 2-pyrrolidinone suggests that this compound represents an adaptive response to the threat of natural enemies, rather than a simple by-product of silk synthesis: while 2-pyrrolidinone occurs on the silk threads produced by adult and large juvenile spiders, it is absent on threads produced by small juvenile spiders, whose threads are sufficiently thin to be inaccessible to ants.  相似文献   

2.
Abstract Many species of orb-spinning spiders construct silk decorations within the structure of the orb-web. The evolutionary significance of these decorations is poorly understood, but the silk decorations of many species reflect UV light, suggesting that they may function to attract insects. In these species, relatively more silk decoration may be required under dimmer light conditions in order to maintain a constant UV-reflecting signal, and hence level of insect attraction. We investigated experimentally whether the orb-spinning spider Argiope aetherea adjusts the amount of silk decoration added to the web according to light conditions. Consistent with the prey-attracting function, we found that spiders adjusted the quantity of silk decoration to their webs, adding more silk decoration when the web was located in dim light rather than bright light.  相似文献   

3.
The silk decorations that adorn the webs of many orb-web spiders are thought to have a signal function, but the evolution of the decorating behaviour remains unresolved. The decoration signal is maintained apparently because it improves foraging efficiency, through either increased encounter rates with prey or reduced damage to the web. Recent investigations suggest that the decorations may originate in a regulation of the activity of the aciniform silk glands, which produce silk for both decorating the web and wrapping prey. This view predicts a link between decorating behaviour and a preference for restraining prey by wrapping with silk, which is evident among species of Argiope spiders. Here I compare the frequency of the wrap attack behaviour in four species of orb-web spiders that occupy the same habitat, but differ in their silk decorating behaviour: two species, Plebs bradleyi and Gea theridioides, build silk decorations, while the other two, Araneus hamiltoni and Backobourkia brounii do not. Spiders were presented with prey items that varied in the ease with which they could be captured, with houseflies being more easily subdued than house crickets. As predicted, the silk decorating species used wrap attacks significantly more often than non-decorating spiders, irrespective of the prey species. These data support the view that both behaviours are evolutionary linked. I propose that silk decorating originated from the evolution of wrap attacking, and that silken web decorations have later evolved into a signal and are now maintained for that function.  相似文献   

4.
Cyclosa spiders attach prey carcasses as decorations to their webs, but the functions of the carcasses are unclear and controversial. We investigated distinctive features of these webs in the field and conducted prey-capture experiments in the lab using the orb-web spider Cyclosa mulmeinensis. Webs with attached decoration had a significantly narrower mesh width than those without decoration and a higher degree of vertical asymmetry in the web’s shape. In the laboratory, webs without decorations trapped significantly more prey, even though other features of the webs were nearly identical. These results suggest that web decorations do not attract prey in this species, but might play other roles such as blinding predators to the spider’s presence.  相似文献   

5.
Many orb-web weaving spiders add conspicuous silken structures, called stabilimenta, to the hub of their webs, which are hypothesized to attract more prey. However, they may also attract predators. Orb spiders should therefore alter their web-building behaviour to minimize predation risk. We tested this hypothesis by experimentally examining web-building responses of the St Andrew cross spider, Argiope versicolor, to predation risk from one of its natural predators, the jumping spider Portia labiata. We randomly assigned A. versicolor juveniles to one of three treatments: (1) blank control (clean blotting paper: no odour from the predator or nonpredator); (2) predator odour cues from P. labiata; and (3) nonpredator control (odour cues from Leucauge decorata). Each individual of A. versicolor was monitored until it had built five consecutive webs (two webs before and three webs after the introduction of predator cues). When exposed to predator cues, the juveniles not only decreased the frequency of stabilimentum building but also refrained from increasing stabilimentum area, capture area and capture silk thread with subsequent webs compared with the blank control and the nonpredator control. Web-building traits, however, were not significantly different between the blank control and the nonpredator control. One plausible explanation is that A. versicolor juveniles can detect and discriminate between predators and nonpredators through olfactory cues and alter stabilimentum building and other web traits in response to the risk of predation. This is the first demonstration of an adaptive, plastic web-building behavioural response induced by chemical cues from a predator.  相似文献   

6.
蛛网结构性能及其适应性   总被引:3,自引:1,他引:2  
卓春晖  蒋平  王昌河  郭聪 《四川动物》2006,25(4):898-902
蛛网是蜘蛛的捕食工具,蛛网的结构性能不仅影响蜘蛛的捕食效率,也关系着蜘蛛的捕食投入。在不同的内外环境条件影响下,蜘蛛会通过蛛网结构性能上的相应变化来调整捕食策略和维持网结构的稳定性。本文主要综述了蛛网的结构性能以及蜘蛛通过蛛网结构性能表现出的对环境因子的适应性。  相似文献   

7.
Are three‐dimensional spider webs defensive adaptations?   总被引:4,自引:0,他引:4  
Spider webs result from complex behaviours that have evolved under many selective pressures. Webs have been primarily considered to be foraging adaptations, neglecting the potential role of predation risk in the evolution of web architecture. The ecological success of spiders has been attributed to key innovations in how spiders use silk to capture prey, especially the invention of chemically adhesive aerial two‐dimensional orb webs. However, araneoid sheet web weavers transformed the orb architecture into three‐dimensional webs and are the dominant group of aerial web‐building spiders world‐wide, both in numbers and described species diversity. We argue that mud‐dauber wasps are major predators of orbicularian spiders, and exert a directional selective pressure to construct three‐dimensional webs such that three‐dimensional webs are partly defensive innovations. Furthermore, patterns of diversification suggest that escape from wasp predators may have facilitated diversification of three‐dimensional web‐building spiders.  相似文献   

8.
Do stabilimenta in orb webs attract prey or defend spiders?   总被引:7,自引:2,他引:5  
Orb-weaving spiders are ideal organisms for the study of conflictbetween behavioral investments in foraging and defense becausetheir webs provide physical manifestations of those investments.We examined the impact of including stabilimenta, designs ofbright-white noncapture silk, at the center of orb webs forforaging and defense in Argiope aurantia. Our findings suggestthat stabilimentum building is a defensive behavior, supportingthe "web advertisement" hypothesis that the high visibilityof stabilimenta can prevent birds from flying through webs.Yet, spiders often do not include stabilimenta in their webs,indicating that a serious cost is associated with them. We alsoshow, through comparison of paired webs with and without stabilimenta,that stabilimenta reduce the prey capture success of spidersby almost 30%. This demonstrates the potential impact that defensivebehaviors of spiders can have on their foraging success andsuggests that much of the variation in stabilimenta may be accountedfor by a cost—benefit trade-off made when including stabilimentain webs.  相似文献   

9.
Predator–prey interactions are important in maintaining the structure and dynamics of ecological communities. Both predators and prey use cues from a range of sensory modalities to detect and assess one another; identification of these cues is necessary to understand how selection operates to shape predator–prey interactions. Mud-dauber wasps (Sphecidae) provision their larval nests with paralyzed spiders, and different genera of wasps specialize on particular spider taxa. Sceliphron caementarium (Drury 1773) wasps preferentially capture spiders that build two-dimensional (2D) webs, rather than those that construct three-dimensional (3D) webs, but the basis of this preference is not clear. Wasps may choose spiders based on an assessment of their web architecture, as 3D webs may provide better defenses against wasp predation than do 2D webs. However, because many hymenopterans use chemical cues to locate and recognize prey, it is also possible that mud-dauber wasps rely on chemical cues associated with the spider and/or the web to assess prey suitability. When we offered foraging S. caementarium wasps 2D and 3D spiders both on and off their webs, we found that in both cases the wasps took 2D spiders and avoided 3D spiders, demonstrating that the web itself is not the impediment. Results of a series of behavioral choice assays involving filter paper discs containing spider cues and chemically manipulated spiders or spider dummies corroborated the importance of spider chemical cues in mediation of prey recognition by mud-dauber wasps. We also discuss the relative importance of visual and chemical cues for prey recognition by wasps, examine the anti-predator behaviors of 2D and 3D spiders, and consider the role of wasp predation in spider diversification.  相似文献   

10.
Spider orb webs are dynamic, energy absorbing nets whose ability to intercept prey is dependent on both the mechnical properties of web design and the material properties of web silks. Variation in web designs reflects variation in spider web spinning behaviours and variation in web silks reflects variation in spider metabolic processes. Therefore, natural selection may affect web function (or prey capture) through two independent and alternative pathways. In this paper, I examine the ways in which architectural and material properties, singly and in concert, influence the ability of webs to absorb insect impact energy. These findings are evaluated in the context of the evolution of diverse aerial webs. Orb webs range along a continuum from high to low energy absorbing. No single feature of web architecture characterizes the amount of energy webs can absorb, but suites of characters indicate web function. In general, webs that intercept heavy and fast flying prey (high energy absorbing webs) are large, built by large spiders, suspended under high tension and characterized by a ratio of radii to spiral turns per web greater than one. In contrast, webs that intercept light and slow flying prey (low energy absorbing webs) are suspended under low tension, are small and are characterized by radial to spiral turn ratios that are less than one. The data suggest that for spiders building high energy absorbing webs, the orb architecture contributes much to web energy absorption. In contrast, for spiders that build low energy absorbing webs, orb architecture contributes little to enhance web energy absorption. Small or slow flying insects can be intercepted by web silks regardless of web design. Although there exists variation in the material properties of silk collected from high and low energy absorbing webs, only the diameter of web fibres varies predictably with silk energy absorption. Web fibre diameter and hence the amount of energy absorbed by web silks is an isometric function of spider size. The significance of these results lies in the apparent absence of selective advantage of orb architecture to low energy absorbing webs and the evolutionary trend to small spiders that build them. Where high energy absorption is not an exacting feature of web design, web architecture should not be tightly constrained to the orb. Assuming the primitive araneoid web design is the orb web, I propose that the evolution of alternative web building behaviours is a consequence of the general, phyletic trend to small size among araneoids. Araneoids that build webs of other than orb designs are able to use new habitats and resources not available to their ancestors.  相似文献   

11.
We are becoming increasingly aware of animal communication outside the range of human sensitivity. Web decorations are silk structures used by orb-web spiders to deceive prey and predators. However, despite the level of interest in these structures, their visibility to prey and predators has never, to our knowledge, been objectively assessed. Here, we use spectrophotometric analyses to show that the decorations of all five tested spider species are visible to honey bees and birds over short and long distances. Furthermore, the discoid decorations of one species may provide some protection against arthropod predators. However, these decorations are inefficient at camouflaging the spider against birds, despite the overlap between the spider's body and web decoration.  相似文献   

12.
Predators may utilize signals to exploit the sensory biases of their prey or their predators. The inclusion of conspicuous silk structures called decorations or stabilimenta in the webs of some orb‐web spiders (Araneae: Araneidae, Tetragnathidae, Uloboridae) appears to be an example of a sensory exploitation system. The function of these structures is controversial but they may signal to attract prey and/or deter predators. Here, we test these predictions, using a combination of field manipulations and laboratory experiments. In the field, decorations influenced the foraging success of adult female St. Andrew’s Cross spiders, Argiope keyserlingi: inclusion of decorations increased prey capture rates as the available prey also increased. In contrast, when decorations were removed, prey capture rates were low and unrelated to the amount of available prey. Laboratory choice experiments showed that significantly more flies (Chrysomya varipes; Diptera: Calliphoridae) were attracted to decorated webs. However, decorations also attracted predators (adult and juvenile praying mantids, Archimantis latistylus; Mantodea: Mantidae) to the web. St. Andrew’s Cross spiders apparently resolve the conflicting nature of a prey‐ and predator‐attracting signal by varying their decorating behaviour according to the risk of predation: spiders spun fewer decorations if their webs were located in dense vegetation where predators had greater access, than if the webs were located in sparse vegetation.  相似文献   

13.
Stationary predators such as spiders can face competition from conspecifics simply by virtue of the spatial positioning of their webs. Shadow competition, wherein a predator 'upstream' restricts access to prey for another individual further 'downstream', can affect the foraging success of stationary predators. However, in spiders that build orb-webs in proximity to each other, insect prey often 'ricochet' off the outer web and land on the inner web. In this study, I asked whether the negative effect of shadow competition could be compensated for by the ricochet effect. I experimentally show that despite a strong spatial advantage to a spider on the outer side in terms of prey interceptions, the likelihood of prey intercepting the inner web is increased through the ricochet effect. I also show that the degree of overlap between the webs significantly influences both the number of prey intercepted as well as the number of ricochets. This study shows experimentally that a spider that builds its web close to a conspecific's web suffers very little cost in terms of lost prey interception.  相似文献   

14.

To capture prey, orb-web spiders create complex traps whose efficiency is contingent on a variety of factors that are not yet completely understood, including web size, competition for food, sun exposure, presence of web decorations and web orientation. Here we evaluate such factors in the field and ask which of them are the most influential variables affecting the quantity of prey captured in Argiope argentata webs. Webs were observed during the morning and the number of prey attached to each web was counted. Using the approach of information criteria based on the Akaike information criterion (AIC) values of each candidate model, we averaged the parameters of a global model, finding that the only predictor which 95% confidence interval did not include zero, was exposure to sunlight (whether the web is continuously shaded or continuously exposed to sunlight). All other variables did not explain variation in prey capture. We conclude that only sun exposure has an important effect on orb-web spiders’ prey capture efficiency in A. argentata. We additionally argue that silk decorations have different functions depending on the habitat and the species.

  相似文献   

15.
Conspicuous colouration attracts prey to a stationary predator   总被引:1,自引:0,他引:1  
Abstract 1. Conspicuous body colouration is counter‐intuitive in stationary predators because sit‐and‐wait tactics frequently rely on concealed traps to capture prey. Consequently, bright colours and contrasting patterns should be rare in predators using traps as they may alert potential prey. Yet, some orb‐weaving spiders are brightly coloured and contrastingly patterned. How can conspicuousness of trap‐building sit‐and‐wait predators be favoured by natural selection? 2. Observations of spiny spiders Gasteracantha fornicata in north‐eastern Australia showed that the size of spiders relative to their orb webs correlated positively with relative prey numbers already captured in their webs. A possible explanation is that the relatively larger appearance of the yellow–black striped dorsal surface of this spider attracts more visually oriented prey items. Prey attracted to webs may get trapped, thereby increasing the spiders' foraging success. 3. To test this hypothesis for the function of conspicuous body colouration, a field experiment was conducted that documented the prey capture rates of spiny spiders after manipulating or sham‐manipulating their appearance. 4. As predicted, spiders that were dyed black on their striped dorsal surface caught relatively fewer prey items than did control spiders. Thus, conspicuous dorsal body colouration may be adaptive in spiny spiders because it increases foraging success and, presumably, survival rates and reproductive outputs. Overall, these data support the colour‐as‐prey‐attractant hypothesis in a stationary, trap‐building predator.  相似文献   

16.
Camouflage is one of the most widespread and powerful strategies that animals use to make detection/recognition more difficult. Many orb-web spiders of the genus Cyclosa add prey remains, plant debris, moults, and/or eggsacs to their webs called web decorations. Web decorations resembling spider body colour pattern have been considered to camouflage the spider from predators. While this camouflage is obvious from a human's perspective, it has rarely been investigated from a predator's perspective. In this study, we tested the visibility of web decorations by calculating chromatic and achromatic contrasts of detritus and eggsac decorations built by Cyclosa octotuberculata, against four different backgrounds viewed by both bird (e.g., blue tits) and hymenopteran (e.g. Wasps) predators. We showed that both juvenile and adult spiders on webs with detritus or egg-sac deco-rations were undetectable by both hymenopteran and bird predators over short and long distances. Our results thus suggest that decorating webs with detritus or eggsacs by C. Octotuberculata may camouflage the spiders from both hymenopteran and bird predators in their common habitats.  相似文献   

17.
Individuals of the orb-weaving spider Nephila clavipesbuild complex webs with a region used for prey capture, the orb, and tangle webs opposite either face, the barrier webs. Barrier webs have been hypothesized to serve a variety of functions, including predator defense, and the primary function of the barrier web should be reflected in the relative size of the barrier to the orb under varying conditions of foraging success and predation risk. To investigate the effects of predation pressure and foraging success on barrier web structure, I conducted a comparative study in three disjunct populations that differed in predation risk and foraging success. Although both the orb web and the barrier webs are silk, there was no indication of a foraging-defense trade-off. Barrier web structure did not change during seasonal shifts in orb web size related to changes in preycapture rate, and barrier web silk density and orb radius were positively correlated. The hypothesis that the construction of barrier webs is in part a response to predation pressure was supported. Barrier webs do deflect attacks by some predators, and barrier webs built by small spiders, suffering frequent predation attempts, had a higher silk density than barrier webs built by larger individuals. Additionally, barrier web complexity decreased at a later age in areas with higher predation risk.  相似文献   

18.
The aerial orb web woven by spiders of the family Araneidae typifies these organisms to laypersons and scientists alike. Here we describe the oldest fossil species of this family, which is preserved in amber from Alava, Spain and represents the first record of Araneidae from the Lower Cretaceous. The fossils provide direct evidence that all three major orb web weaving families: Araneidae, Tetragnathidae and Uloboridae had evolved by this time, confirming the antiquity of the use of this remarkable structure as a prey capture strategy by spiders. Given the complex and stereotyped movements that all orb weavers use to construct their webs, there is little question regarding their common origin, which must have occurred in the Jurassic or earlier. Thus, various forms of this formidable prey capture mechanism were already in place by the time of the explosive Cretaceous co-radiation of angiosperms and their flying insect pollinators. This permitted a similar co-radiation of spider predators with their flying insect prey, presumably without the need for a 'catch-up lag phase' for the spiders.  相似文献   

19.
Species-specific differences in prey-capture success of co-existing web-building spiders are derived from complex factors: various web parameters, web placement, and the spider's response to prey. By examining these, this study revealed prey-capture modes of three species of web-building spiders of the genus Cyclosa living in the same habitat. Cyclosa octotuberculata and C. argenteoalba showed a greater prey capture rate than C. sedeculata , though size compositions of prey were similar in all species. Cyclosa octotuberculata spins thick silk with large adhesive droplets, which may contribute to the higher stopping and retention abilities of the web. Cyclosa argenteoalba constructs webs at open sites where prey is abundant, and has webs of dense mesh size, which may result in the high stopping ability of webs. In C. sedeculata , the web is less effective for stopping and retaining prey, probably owing to the thin silk with a small amount of sticky material, and the response to prey is not rapid. It seems that the former two species achieve a similar level of foraging success by using different sets of foraging traits and the third species has the disadvantage in most aspects of foraging.  相似文献   

20.
Zygiella x-notata is an orb-weaving spider that often renews its trap daily. Web building has associated costs and benefits, and building successive webs may have consequences for lifetime reproductive success. In the laboratory, we tested the ability of Z. x-notata to modify its building behaviour in response to various stages in predation (prey detection, capture and ingestion) experienced with a previous web. We determined which stages provided information for the spiders. Spiders that detected, captured and ingested prey and then rebuilt their web used less silk and made a smaller capture area than in the previous web. There was no effect of prey detection alone on the next web. Capture without feeding gave the same results as capture followed by feeding. The spiders that ate prey without detection and capture (feeding by hand) had the same energetic gains as spiders that caught prey but delayed building a new web. The spiders thus showed plasticity in web-building behaviour and in the amount of silk used (energetic investment) in the short term (from one web to the next). Changes in body condition may therefore influence web construction. Moreover, information gained during prey capture appeared to influence the size and structure of the next web. This ability should enable spiders to adapt their web building to maximize their fitness. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号