首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane proteins are core components of many essential cellular processes, and high-resolution structural data is therefore highly sought after. However, owing to the many bottlenecks associated with membrane protein crystallization, progress has been slow. One major problem is our inability to obtain sufficient quantities of membrane proteins for crystallization trials. Traditionally, membrane proteins have been isolated from natural sources, or for prokaryotic proteins, expressed by recombinant techniques. We are however a long way away from a streamlined overproduction of eukaryotic proteins. With this technical limitation in mind, we have probed the question as to how far prokaryotic homologues can take us towards a structural understanding of the eukaryotic/human membrane proteome(s).  相似文献   

2.
Barbany M  Morata J  Meyer T  Lois S  Orozco M  de la Cruz X 《Proteins》2012,80(9):2235-2249
Recent studies have shown how alternative splicing (AS), the process by which eukaryotic genes express more than one product, affects protein sequence and structure. However, little information is available on the impact of AS on protein dynamics, a property fundamental for protein function. In this work, we have addressed this issue using molecular dynamics simulations of the isoforms of two model proteins: glutathione S-transferase and ectodysplasin-A. We have found that AS does not have a noticeable impact on global or local structure fluctuations. We have also found that, quite interestingly, AS has a significant effect on the coupling between key structural elements such as surface cavities. Our results provide the first atom-level view of the impact of AS on protein dynamics, as far as we know. They can contribute to refine our present view of the relationship between AS and protein disorder and, more importantly, they reveal how AS may modify structural dynamic couplings in proteins.  相似文献   

3.
Low in vivo solubility of recombinant proteins expressed in Escherichia coli can seriously hinder the purification of structural samples for large-scale proteomic NMR and X-ray crystallography studies. Previous results from our laboratory have shown that up to one half of all bacterial and archaeal proteins are insoluble when overexpressed in E. coli. Although a number of strategies may be used to increase in vivo protein solubility, there are no generally applicable methods, and the expression of each insoluble recombinant protein must be individually optimized. For this reason, we have tested a generic denaturation/refolding protein purification procedure to assess the number of structural samples that could be generated by using this methodology. Our results show that a denaturation/refolding protocol is appropriate for many small proteins (相似文献   

4.
Protein production using recombinant DNA technology has a fundamental impact on our understanding of biology through providing proteins for structural and functional studies. Escherichia coli (E. coli) has been traditionally used as the default expression host to over‐express and purify proteins from many different organisms. E. coli does, however, have known shortcomings for obtaining soluble, properly folded proteins suitable for downstream studies. These shortcomings are even more pronounced for the mycobacterial pathogen Mycobacterium tuberculosis, the bacterium that causes tuberculosis, with typically only one third of proteins expressed in E. coli produced as soluble proteins. Mycobacterium smegmatis (M. smegmatis) is a closely related and non‐pathogenic species that has been successfully used as an expression host for production of proteins from various mycobacterial species. In this review, we describe the early attempts to produce mycobacterial proteins in alternative expression hosts and then focus on available expression systems in M. smegmatis. The advantages of using M. smegmatis as an expression host, its application in structural biology and some practical aspects of protein production are also discussed. M. smegmatis provides an effective expression platform for enhanced understanding of mycobacterial biology and pathogenesis and for developing novel and better therapeutics and diagnostics.  相似文献   

5.
Three proteins belonging to the thaumatin-like proteins family were compared in this study from a structural point of view: zeamatin, a new recently isolated PR-5 from Cassia didymobotrya and the commercial sweet-thaumatin. The former two proteins possess antifungal activities while commercial thaumatin is well known to be a natural sweetener. Intrinsic fluorescence studies have evidenced that the three proteins behave differently in unfolding experiments showing different structural rigidity. All the three proteins are more stable at slight acidic buffers, but sweet-thaumatin has a major tendency to destructurate itself. Similar observations were made from circular dichroism studies where a structural dependence relationship from the pH and the solvent used confirmed a hierarchic scale of stability for the three proteins. These structural differences should be considered to be significant for a functional role.  相似文献   

6.
TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies.  相似文献   

7.
Membrane proteins play many critical roles in cells, mediating flow of material and information across cell membranes. They have evolved to perform these functions in the environment of a cell membrane, whose physicochemical properties are often different from those of common cell membrane mimetics used for structure determination. As a result, membrane proteins are difficult to study by traditional methods of structural biology, and they are significantly underrepresented in the protein structure databank. Solid-state Nuclear Magnetic Resonance (SSNMR) has long been considered as an attractive alternative because it allows for studies of membrane proteins in both native-like membranes composed of synthetic lipids and in cell membranes. Over the past decade, SSNMR has been rapidly developing into a major structural method, and a growing number of membrane protein structures obtained by this technique highlights its potential. Here we discuss membrane protein sample requirements, review recent progress in SSNMR methodologies, and describe recent advances in characterizing membrane proteins in the environment of a cellular membrane.  相似文献   

8.
Grass carp reovirus (GCRV) is the first aquatic vi-rus isolated and characterized in mainland China[1]. In 1983, it was reported that GCRV was the agent that caused severe outbreaks of infectious hemorrhage disease in grass carp (Cyenopharyngodon idellus). Subsequently, a series of relatively systematic analyses have been conducted to characterize the biological and molecular properties of GCRV[2-8]. More than 50 aquareoviruses have been identified since the first reovirus-like virus was…  相似文献   

9.
Grass carp reovirus (GCRV) is a relatively new virus first isolated in China and is a member of the Aquareovirus genus of the Reoviridae family. Recent report of genomic sequencing showed that GCRV shared high degree of homology with mammalian reovirus (MRV). As a step of our effort to understand the structural basis of GCRV pathogenesis, we determined the three-dimensional (3D) structure of GCRV capsid at 17 Å resolution by electron cryomicroscopy. Each GCRV capsid has a multilayered organization, consisting of an RNAcore, an inner, middle and outer protein layer. The outer layer is made up of 200 trimers that are arranged on an incomplete T=13 icosahedral lattice. A characteristic feature of this layer is the depression resulting from the absence of trimers around the peripentonal positions, revealing the underlying trimers on the middle layer. There are 120 subunits in the inner layer arranged with T=1 symmetry. These structural features are common to other members of the Reoviridae. Moreover, SDS-PAGE analysis showed that GCRV virions contain seven structural proteins (VP1-VP7). These structural proteins have a high degree of sequence homology to MRV, consistent with the structural similarities observed in our study. The high structural similarities of isolated GCRV and MRV suggest that future structural studies focusing on GCRV entering into and replicating within its host cell are necessary in order to fully understand the structural basis of GCRV pathogenesis.  相似文献   

10.
Different overexpression systems are widely used in the laboratory to produce proteins in a reasonable amount for functional and structural studies. However, to optimize these systems without modifying the cellular functions of the living organism remains a challenging task. Cell-free expression systems have become a convenient method for the high-throughput expression of recombinant proteins, and great effort has been focused on generating high yields of proteins. Furthermore, these systems represent an attractive alternative for producing difficult-to-express proteins, such as membrane proteins. In this review, we highlight the recent improvements of these cell-free expression systems and their direct applications in the fields of membrane proteins production, protein therapy and modern proteomics.  相似文献   

11.
As part of our structural proteomics initiative, we have determined the crystal structure of MTH1491, a previously uncharacterized hypothetical protein from Methanobacterium thermoautotrophicum. MTH1491 is one of numerous structural genomics targets selected in a genome-wide survey of uncharacterized proteins. It belongs to a family of proteins whose biological function is not known. The crystal structure of MTH1491, the first structure for this family of proteins, consists of an overall five-stranded parallel beta-sheet with strand order 51234 and flanking helices. The oligomeric form of this molecule is a trimer as seen from both crystal contacts and gel filtration studies. Analysis revealed that the structure of MTH1491 is similar to that of dehydrogenases, amidohydrolases, and oxidoreductases. Using a combination of sequence and structural analyses, we showed that MTH1491 does not belong to either the dehydrogenase or the amidohydrolase superfamilies of proteins.  相似文献   

12.
A multitude of complex diseases have been linked to elevated homocysteine levels; however, till date there is no plausible explanation for a single amino acid's involvement in so many diseases. Since homocysteine is a reactive thiol amino acid and the majority of plasma homocysteine is protein thiol bound, we hypothesized that homocysteine might bind to accessible cysteine residues in target proteins, thereby modulating its structure or function or both. The parameters that dictate homocysteine-protein interaction are not well understood, and the few known homocysteine binding proteins were identified by a candidate protein approach. In this study, we identified potential homocysteine interacting proteins based on cysteine content, solvent accessibility of cysteine residues, and dihedral strain energies and pKa of these cysteines. Pathway mapping of the cysteine-rich proteins revealed that proteins in the coagulation cascade, notch receptor-mediated signaling, LDL endocytosis, programmed cell death, and extracellular matrix proteins were significantly over-represented with cysteine-rich proteins, and we believe that homocysteine has a high probability to bind to proteins in these pathways. In fact, several clinical studies have implicated high homocysteine levels to be associated with diseases like thrombosis, neural tube defects, and so forth, which result from dysfunction of one or more of the proteins identified in our study. Further, we successfully validated our prediction parameters on the proteins that have already been experimentally shown to bind homocysteine, and our structural analysis argues a plausible explanation for these prior reported protein interactions with homocysteine that could not be previously explained.  相似文献   

13.
Molecular aspects of heterosis in plants   总被引:23,自引:0,他引:23  
  相似文献   

14.
The past decade has witnessed great advances in our understanding of protein structure‐function relationships in terms of the ubiquitous existence of intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs). The structural disorder of IDPs/IDRs enables them to play essential functions that are complementary to those of ordered proteins. In addition, IDPs/IDRs are persistent in evolution. Therefore, they are expected to possess some advantages over ordered proteins. In this review, we summarize and survey nine possible advantages of IDPs/IDRs: economizing genome/protein resources, overcoming steric restrictions in binding, achieving high specificity with low affinity, increasing binding rate, facilitating posttranslational modifications, enabling flexible linkers, preventing aggregation, providing resistance to non‐native conditions, and allowing compatibility with more available sequences. Some potential advantages of IDPs/IDRs are not well understood and require both experimental and theoretical approaches to decipher. The connection with protein design is also briefly discussed.  相似文献   

15.
Liu J  Rost B 《Proteins》2004,55(3):678-688
We developed a method CHOP dissecting proteins into domain-like fragments. The basic idea was to cut proteins beginning from very reliable experimental information (PDB), proceeding to expert annotations of domain-like regions (Pfam-A), and completing through cuts based on termini of known proteins. In this way, CHOP dissected more than two thirds of all proteins from 62 proteomes. Analysis of our structural domain-like fragments revealed four surprising results. First, >70% of all dissected proteins contained more than one fragment. Second, most domains spanned on average over approximately 100 residues. This average was similar for eukaryotic and prokaryotic proteins, and it is also valid-although previously not described-for all proteins in the PDB. Third, single-domain proteins were significant longer than most domains in multidomain proteins. Fourth, three fourths of all domains appeared shorter than 210 residues. We believe that our CHOP fragments constituted an important resource for functional and structural genomics. Nevertheless, our main motivation to develop CHOP was that the single-linkage clustering method failed to adequately group full-length proteins. In contrast, CLUP-the simple clustering scheme CLUP introduced here-succeeded largely to group the CHOP fragments from 62 proteomes such that all members of one cluster shared a basic structural core. CLUP found >63,000 multi- and >118,000 single-member clusters. Although most fragments were restricted to a particular cluster, approximately 24% of the fragments were duplicated in at least two clusters. Our thresholds for grouping two fragments into the same cluster were rather conservative. Nevertheless, our results suggested that structural genomics initiatives have to target >30,000 fragments to at least cover the multimember clusters in 62 proteomes.  相似文献   

16.
Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the second- ary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.  相似文献   

17.
Repeat proteins comprise tandem arrays of a small structural motif. Their structure is defined and stabilized by interactions between residues that are close in the primary sequence. Several studies have investigated whether their structural modularity translates into modular thermodynamic properties. Tetratricopeptide repeat proteins (TPRs) are a class in which the repeated unit is a 34 amino acid helix-turn-helix motif. In this work, we use differential scanning calorimetry (DSC) to study the equilibrium stability of a series of TPR proteins with different numbers of an identical consensus repeat, from 2 to 20, CTPRa2 to CTPRa20. The DSC data provides direct evidence that the folding/unfolding transition of CTPR proteins does not fit a two-state folding model. Our results confirm and expand earlier studies on TPR proteins, which showed that apparent two-state unfolding curves are better fit by linear statistical mechanics models: 1D Ising models in which each repeat is treated as an independent folding unit.  相似文献   

18.
Proteins that can interact with multiple partners play central roles in the network of protein-protein interactions. They are called hub proteins, and recently it was suggested that an abundance of intrinsically disordered regions on their surfaces facilitates their binding to multiple partners. However, in those studies, the hub proteins were identified as proteins with multiple partners, regardless of whether the interactions were transient or permanent. As a result, a certain number of hub proteins are subunits of stable multi-subunit proteins, such as supramolecules. It is well known that stable complexes and transient complexes have different structural features, and thus the statistics based on the current definition of hub proteins will hide the true nature of hub proteins. Therefore, in this paper, we first describe a new approach to identify proteins with multiple partners dynamically, using the Protein Data Bank, and then we performed statistical analyses of the structural features of these proteins. We refer to the proteins as transient hub proteins or sociable proteins, to clarify the difference with hub proteins. As a result, we found that the main difference between sociable and nonsociable proteins is not the abundance of disordered regions, in contrast to the previous studies, but rather the structural flexibility of the entire protein. We also found greater predominance of charged and polar residues in sociable proteins than previously reported.  相似文献   

19.
The helicase function of the minichromosome maintenance protein (MCM) is essential for genomic DNA replication in archaea and eukaryotes. There has been rapid progress in studies of the structure and function of MCM proteins from different organisms, leading to better understanding of the MCM helicase mechanism. Because there are a number of excellent reviews on this topic, we will use this review to summarize some of the recent progress, with particular focus on the structural aspects of MCM and their implications for helicase function. Given the hexameric and double hexameric architecture observed by X-ray crystallography and electron microscopy of MCMs from archaeal and eukaryotic cells, we summarize and discuss possible unwinding modes by either a hexameric or a double hexameric helicase. Additionally, our recent crystal structure of a full length archaeal MCM has provided structural information on an intact, multi-domain MCM protein, which includes the salient features of four unusual β-hairpins from each monomer, and the side channels of a hexamer/double hexamer. These new structural data enable a closer examination of the structural basis of the unwinding mechanisms by MCM.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号