首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

2.
Somers  J. A.  Tait  M. I.  Long  W. F.  Williamson  F. B. 《Hydrobiologia》1990,204(1):491-497
The effects of a range of fractions from calcareous and non-calcareous marine red algae on the crystal growth of calcite-seeded supersaturated calcium carbonate solutions were monitored by measuring the change in conductivity. An effective inhibitor of crystallization was a macromolecular fraction derived from the coralline red alga, Corallina officinalis, by a series of acid and alkali treatments. A preliminary characterization of the extract suggests the presence of a protein-polysaccharide complex. The possibility that this participates in the modulation of calcification in vivo is suggested.  相似文献   

3.
Three intertidal sites dominated by Corallina turfs were investigated in Hokkaido, Japan. The sites (A, B and C) differed in slope, wave exposure and length of time exposed to air during tidal cycles. Monthly samples were analyzed for frond morphology and other features. Site A, the most wave-exposed site, was dominated by Corallina sp. X, an unknown species, and sites B and C by Corallina pilulifera Postels et Ruprecht. At the different sites the populations differed in conceptacle abundance, coverage by epiphytic Titanoderma corallinae (P. Crouan et H. Crouan) Woelkerling, Chamberlain et Silva, amount of contained sediment, numbers of axes per quadrat, numbers of branch fusions, branch entanglement, frond dryweight, frond length, amount of adventitious branching, numbers of epiphytes (exclusive of T. corallinae), and numbers of animal species. Ninety-one animal species were recorded from the turfs. Corallina is affected morphologically by conditions inherent in its microhabitat, including desiccation, epiphyte loading and the abundance of herbivores.  相似文献   

4.
Red algae of the family Peyssonneliaceae typically form thin crusts impregnated with aragonite. Here, we report the first discovery of brucite in a thick red algal crust (~1 cm) formed by the peyssonnelioid species Polystrata dura from Papua New Guinea. Cells of P. dura were found to be infilled by the magnesium‐rich mineral brucite [Mg(OH)2]; minor amounts of magnesite and calcite were also detected. We propose that cell infill may be associated with the development of thick (> ~5 mm) calcified red algal crusts, integral components of tropical biotic reefs. If brucite infill within the P. dura crust enhances resistance to dissolution similarly to crustose coralline algae that infill with dolomite, then these crusts would be more resilient to future ocean acidification than crusts without infill.  相似文献   

5.
Both global and local environmental changes threaten coral reef ecosystems. To evaluate the effects of high seawater temperature and phosphate enrichment on reef‐building crustose coralline algae, fragments of Porolithon onkodes were cultured for 1 month under laboratory conditions. The calcification rate of the coralline algae was not affected at 30°C, but it decreased to the negatives at 32°C in comparison to the control treatment of 27°C, indicating that the temperature threshold for maintaining positive production of calcium carbonate lies between 30 and 32°C. Phosphate enrichment of 1–2 μmol L ?1 did not affect the calcification rate. The net oxygen production rate was enhanced by phosphate enrichment, suggesting that the photosynthetic rate was limited by the availability of phosphate. It was concluded that moderate phosphate enrichment does not directly deteriorate algal calcification but instead ameliorates the negative effects of high seawater temperature on algal photosynthesis.  相似文献   

6.
Coralline red algae play a key role in the ecology of near shore marine ecosystems and are increasingly being used to study the effects of climate change in the marine environment. Corallines are very difficult to identify to species, and even to genus, using morpho‐anatomy, likely complicating studies of their ecology, physiology, and biodiversity. We sequenced a 296 base pair fragment of chloroplast DNA from a 187‐year‐old isolectotype specimen of Pachyarthron cretaceum, a morphologically distinct geniculate species, to demonstrate that coralline morphology is often misleading and that species names can only be applied unequivocally by comparing DNA sequences from type material with sequences from field‐collected specimens. Our results indicate that Pachyarthron cretaceum is synonymous with Corallina officinalis.  相似文献   

7.
This study characterizes the photoacclimation and photoregulation mechanisms that allow calcified macroalgae of the genus Corallina (Corallinales, Rhodophyta) to dominate rock pool habitats across the NE Atlantic despite the highly variable irradiance regimes experienced. Rapid light curves (RLCs) were performed with pulse amplitude modulation (PAM) fluorometry in situ across a full seasonal cycle in the UK intertidal with C. officinalis and C. caespitosa. Latitudinal comparisons were performed across the full extent of C. officinalis’ range in the NE Atlantic (Iceland–northern Spain), and for C. caespitosa in northern Spain. Ex situ RLCs with dark recovery were further employed to assess the optimal, as compared with actual, photophysiology across seasons and latitudes. Corallina species were shown to photoacclimate at seasonal timescales to changing irradiance, increasing light-harvesting during low-light autumn/winter periods and protecting photosystems during high-light summer conditions. Seasonal photoacclimation was achieved through alteration in the number of photosystem (PS) units (PSII and light harvesting antennae) over time. Non-photochemical quenching (NPQ) served as an important photoregulation mechanism utilized by Corallina to prevent or minimize photoinhibition over shorter time scales (seconds–hours), though the efficiency of NPQ was dependent on the seasonal-acclimated state. With increasing latitude the efficiency of photoregulation decreased, representing potential differential photoadaptation of Corallina across species ranges in the NE Atlantic. In contrast, highly conserved inter-specific patterns in photophysiological responses to irradiance were apparent. This study demonstrates the photophysiological mechanisms allowing Corallina to optimize use of the variable irradiance conditions apparent in rock pool environments, when and how they are employed, and their limitations.  相似文献   

8.
As the process of ocean acidification alters seawater carbon chemistry, physiological processes such as skeletal accretion are expected to become more difficult for calcifying organisms. The crustose coralline red algae (Corallinales, Rhodophyta) form an important guild of calcifying primary producers in the temperate Northeast Pacific. The morphology of important ecological traits, namely, skeletal density and thallus thickness near the growing edge, was evaluated in Pseudolithophyllum muricatum (Foslie) Steneck & R.T. Paine, the competitively dominant alga within this guild. P. muricatum shows a morphological response to increased ocean acidification in the temperate Northeast Pacific. Comparing historical (1981–1997) and modern (2012) samples from the field, crust thickness near the growing edge was approximately half as thick in modern samples compared with historical samples, while crust calcite density showed no significant change between the two sample groups. Morphological changes at the growing edge have important consequences for mediating competitive interactions within this guild of algae, and may affect the role of crustose coralline algal beds as hosts to infaunal communities and facilitators of recruitment in many invertebrate and macroalgal species.  相似文献   

9.
Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high‐Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community‐scale and long‐term experiments in stress response.  相似文献   

10.
Porolithon is one of the most ecologically important genera of tropical and subtropical crustose (non-geniculate) coralline algae growing abundantly along the shallow margins of coral reefs and functioning to cement reef frameworks. Thalli of branched, fruticose Porolithon specimens from the Indo-Pacific Ocean traditionally have been called P. gardineri, while massive, columnar forms have been called P. craspedium. Sequence comparisons of the rbcL gene both from type specimens of P. gardineri and P. craspedium and from field-collected specimens demonstrate that neither species is present in east Australia and instead resolve into four unique genetic lineages. Porolithon howensis sp. nov. forms columnar protuberances and loosely attached margins and occurs predominantly at Lord Howe Island; P. lobulatum sp. nov. has fruticose to clavate forms and free margins that are lobed and occurs in the Coral Sea and on the Great Barrier Reef (GBR); P. parvulum sp. nov. has short (<2 cm), unbranched protuberances and attached margins and is restricted to the central and southern GBR; and P. pinnaculum sp. nov. has a mountain-like, columnar morphology and occurs on oceanic Coral Sea reefs. A rbcL gene sequence of the isotype of P. castellum demonstrates it is a different species from other columnar species. In addition to the diagnostic rbcL and psbA marker sequences, the four new species may be distinguished by a combination of features including thallus growth form, margin shape (attached or unattached), and medullary system (coaxial or plumose). Porolithon species, because of their ecological importance and sensitivity to ocean acidification, need urgent documentation of their taxonomic diversity.  相似文献   

11.
Lithophyllum byssoides is a common coralline alga in the intertidal zone of Mediterranean coasts, where it produces biogenic concretions housing a high algal and invertebrate biodiversity. This species is an ecosystem engineer and is considered a target for conservation efforts, but designing effective conservation strategies currently is impossible due to lack of information about its population structure. The morphological and molecular variation of L. byssoides was investigated using morphoanatomy and DNA sequences (psbA and cox2,3) obtained from populations at 15 localities on the Italian and Croatian coasts. Lithophyllum byssoides exhibited a high number of haplotypes (31 psbA haplotypes and 24 cox2,3 haplotypes) in the central Mediterranean. The psbA and cox2,3 phylogenies were congruent and showed seven lineages. For most of these clades, the distribution was limited to one or a few localities, but one of them (clade 7) was widespread across the central Mediterranean, spanning the main biogeographic boundaries recognized in this area. The central Mediterranean populations formed a lineage separate from Atlantic samples; psbA pair‐wise divergences suggested that recognition of Atlantic and Mediterranean L. byssoides as different species may be appropriate. The central Mediterranean haplotype patterns of L. byssoides were interpreted as resulting from past climatic events in the hydrogeological history of the Mediterranean Sea. The high haplotype diversity and the restricted spatial distribution of the seven lineages suggest that individual populations should be managed as independent units.  相似文献   

12.
Magnesium content, strongly correlated with temperature, has been developed as a climate archive for the late Holocene without considering anatomical controls on Mg content. In this paper, we explore the ultrastructure and cellular scale Mg‐content variations within four species of North Atlantic crust‐forming Phymatolithon. The cell wall has radial grains of Mg‐calcite, whereas the interfilament (middle lamella) has grains aligned parallel to the filament axis. The proportion of interfilament and cell wall carbonate varies by tissue and species. Three distinct primary phases of Mg‐calcite were identified: interfilament Mg‐calcite (mean 8.9 mol% MgCO3), perithallial cell walls Mg‐calcite (mean 13.4 mol% MgCO3), and hypothallium Mg‐calcite (mean 17.1 mol% MgCO3). Magnesium content for the bulk crust, an average of all phases present, showed a strongly correlated (R2 = 0.975) increase of 0.31 mol% MgCO3 per °C. Of concern for climate reconstructions is the potential for false warming signals from undetected postgrazing wound repair carbonate that is substantially enriched in Mg, unrelated to temperature. Within a single crust, Mg‐content of component carbonates ranged from 8 to 20 mol% MgCO3, representing theoretical thermodynamic stabilities from aragonite‐equivalent to unstable higher‐Mg‐calcite. It is unlikely that existing current predictions of ocean acidification impact on coralline algae, based on saturation states calculated using average Mg contents, provide an environmentally relevant estimate.  相似文献   

13.
The current diagnosis of the genus Lithophyllum includes absent or rare trichocyte occurrence. After examining holotype material, single trichocytes have been revealed to occur abundantly in Lithophyllum kotschyanum Unger, and in freshly collected specimens of Lithophyllum spp. from the Red Sea, Gulf of Aden and Socotra Island (Yemen). Trichocyte occurrence is not considered a diagnostic character at specific or supraspecific levels in the Lithophylloideae, and the ecological significance of trichocyte formation is discussed. The generitype species, L. incrustans Philippi, does not show trichocytes nor do many other Lithophyllum species from diverse geographic localities, but the presence of abundant trichocytes in other congeneric taxa requires emendation of the genus diagnosis. Therefore, the diagnosis of Lithophyllum is here emended by eliminating the adjective “rare” in the sentence concerning trichocyte occurrence, as follows: “Trichocytes present or absent, if present occurring singly.”  相似文献   

14.
为了探讨CO2海底封存潜在的渗漏危险对于海洋生物的可能影响,以大型钙化藻类小珊瑚藻(Corallina pilulifera)为研究对象,在室内控光控温条件下,通过向培养海水充入CO2气体得到3种不同酸化程度的培养条件(pH 8.1、6.8和5.5),24h后比较藻体光合作用和钙化作用情况。结果显示:相对于自然海水培养条件(pH 8.1),在pH 6.8条件下培养的小珊瑚藻光合固碳速率得到了增强,而在pH 5.5条件下光合固碳速率则降低;随着酸化程度的增强,藻体的钙化固碳速率越来越低,在pH 5.5条件下甚至表现为负值[(-2.53±0.57)mg C g-1干重h-1];藻体颗粒无机碳(PIC)和颗粒有机碳(POC)含量的比值随着酸化程度的加强而降低,这反映了酸化对光合和钙化作用的综合效应。快速光反应曲线的测定结果显示:随着酸化程度的增强,强光引起的光抑制程度越来越强;在酸化条件下,藻体的光饱和点显著降低,但pH 6.8和5.5之间没有显著差异;低光下的电子传递速率在pH 8.1和6.8之间没有显著差异,pH 5.5培养条件下显著降低;最大电子传递速率在pH 6.8时最大,在pH 5.5时最低。以上结果说明,高浓度CO2引起的海水酸化显著地影响着小珊瑚藻的光合和钙化过程,不同的酸化程度下,藻体的光合、钙化反应不同,在较强的酸化程度下(pH 5.5),藻体的光合和钙化过程都将受到强烈的抑制,这些结果为认识CO2海底封存渗漏危险对海洋钙化藻类的可能影响提供了理论参考。  相似文献   

15.
A new species of semi-endophytic coralline alga, Lithophyllum cuneatum (Corallinaceae: Lithophylloideae), is described from Fiji. The species is characterized by a wedge-like thallus that is partially buried in the thallus of the host coralline, Hydrolithon onkodes (Heydrich) Penrose et Woelkerling or occasionally Neogoniolithon sp., and that appears at the surface of the host as a small pustule that is usually paler in color than the host. The thallus consists of erect filaments that are derived from a single cell. The basal cell, when visible, is non-palisade, and areas of bistratose margin are absent. Cells of contiguous erect filaments are joined by secondary pit connections. Epithallial cells are present in 2–3 layers, and individual trichocytes are common. Gametangial plants are dioecious. Male conceptacles have simple spermatangial systems that are confined to the floors of their elliptical chambers. Carposporangial conceptacles contain 5–8 celled gonimoblast filaments that are borne at the margin of a more-or-less discoid fusion cell, and so occupy the periphery of the elliptical conceptacle chambers. Tetrasporangial conceptacles are uniporate, with roofs formed from peripheral filaments, and chambers lack a central columella of sterile filaments. Despite its semi-endophytic nature, haustorial cells are absent, and plastids and pigmentation are present.  相似文献   

16.
The Southwest Atlantic is notable for having extensive reef areas cemented by nongeniculate coralline red algae. Based on an analysis of four genetic markers and morpho‐anatomical features, we clarify the species of Harveylithon in the tropical and warm temperate Southwest Atlantic. Species delimitation methods (mBGD, ABGD, SPN, and PTP), using three markers (psbA, rbcL, and COI), support the recognition of three new species: H. catarinense sp. nov., H. maris‐bahiensis sp. nov., and H. riosmenum sp. nov., previously incorrectly called Hydrolithon samoënse. Our findings highlight the importance of using an approach with several lines of evidence to solve the taxonomic status of the cryptic species.  相似文献   

17.
Aguirrea fluegelii gen. et sp. nov. (Corallinales, Corallinophycidae, Rhodophyta) is described from the mid‐Silurian of Gotland Island, Sweden (Högklint Formation, lower Wenlock). The holotype is of dimerous construction and includes a uniporate conceptacle with a sporangium, thus providing evidence that taxa of the Corallinales/Corallinaceae existed at least 300 million years earlier than previously documented. Aguirrea fluegelii cannot be unequivocally placed in any of seven currently recognized lineages/subfamilies/groups of the Corallinaceae as not all diagnostic characters are preserved, and thus is accorded incertae sedis status within the family Corallinaceae and order Corallinales. Extant evolutionary history studies of Corallinophycidae involving molecular clocks now require updating using new calibration points to take account of the much earlier unequivocal mid‐Silurian record of uniporate conceptacle‐bearing taxa of Corallinales/Corallinaceae as well as the parallel record of Graticula, a genus attributed to the Sporolithales.  相似文献   

18.
The nongeniculate species Neogoniolithon brassica‐florida (Harvey) Setchell et Mason is circumscribed as a polymorphic species with various gross morphologies due to it being synonymized with several previous species. However, small subunit rDNA and cox1 analyses showed that N. brassica‐florida was polyphyletic, and strongly imply that crustose species lacking any protuberances such as Neogoniolithon fosliei (Heydrich) Setchell et Mason and species with protuberances or branches such as N. brassica‐florida and N. frutescens (Foslie) Setchell et Mason should be treated as genetically different groups (species). Therefore, we propose the resurrection of N. frutescens. We also confirmed that N. trichotomum was distinguished from N. frutescens by slender uniform diameter branches, a conceptacle with a prominent ostiole, and large cox1 interspecific sequence differences. Male and female reproductive structures of N. trichotomum were illustrated for the first time. Neogoniolithon fosliei, was divided into three clades, each of which was recognized as a species complex based on interspecific level sequence differences within clade and morphological differences. Therefore, we treated the clade most similar to N. fosliei as N. fosliei complex (Clade B), and the other clades as respective complexes of N. cf. fosliei with yellow conceptacles (Clade A) or N. cf. fosliei with large conceptacles (Clade C). Of two species complexes (Clade A and B) were morphologically consistent with two entities of N. fosliei previously reported in the Ryukyu Islands, Japan, which is supported by their niche partitioning. DNA barcoding research of nongeniculate corallines can promote the finding of more reliable taxonomic characters and the understanding of their biological aspects.  相似文献   

19.
The response of respiration, photosynthesis, and calcification to elevated pCO2 and temperature was investigated in isolation and in combination in the Mediterranean crustose coralline alga Lithophyllum cabiochae. Algae were maintained in aquaria during 1 year at near‐ambient conditions of irradiance, at ambient or elevated temperature (+3°C), and at ambient (ca. 400 μatm) or elevated pCO2 (ca. 700 μatm). Respiration, photosynthesis, and net calcification showed a strong seasonal pattern following the seasonal variations of temperature and irradiance, with higher rates in summer than in winter. Respiration was unaffected by pCO2 but showed a general trend of increase at elevated temperature at all seasons, except in summer under elevated pCO2. Conversely, photosynthesis was strongly affected by pCO2 with a decline under elevated pCO2 in summer, autumn, and winter. In particular, photosynthetic efficiency was reduced under elevated pCO2. Net calcification showed different responses depending on the season. In summer, net calcification increased with rising temperature under ambient pCO2 but decreased with rising temperature under elevated pCO2. Surprisingly, the highest rates in summer were found under elevated pCO2 and ambient temperature. In autumn, winter, and spring, net calcification exhibited a positive or no response at elevated temperature but was unaffected by pCO2. The rate of calcification of L. cabiochae was thus maintained or even enhanced under increased pCO2. However, there is likely a trade‐off with other physiological processes. For example, photosynthesis declines in response to increased pCO2 under ambient irradiance. The present study reports only on the physiological response of healthy specimens to ocean warming and acidification, however, these environmental changes may affect the vulnerability of coralline algae to other stresses such as pathogens and necroses that can cause major dissolution, which would have critical consequence for the sustainability of coralligenous habitats and the budgets of carbon and calcium carbonate in coastal Mediterranean ecosystems.  相似文献   

20.
For the first time, a comprehensive assessment of Mesophyllum species diversity and their distribution in Atlantic Europe and the Mediterranean Sea is presented based on molecular (COI-5P, psbA) and morphological data. The distribution ranges were redefined for the four species collected in this study: M. alternans, M. expansum, M. macroblastum and M. sphaericum. Mesophyllum sphaericum, which was previously known only from a single maerl bed in Galicia (NW Spain), is reported from the Mediterranean Sea. The known range of M. expansum (Mediterranean and Macaronesia) was extended to the Atlantic Iberian Peninsula. The occurrence of M. alternans was confirmed along the Atlantic French coast south to Algarve (southern Portugal). Mesophyllum lichenoides was only recorded from the Atlantic, whereas M. macroblastum appears to be restricted to the Mediterranean Sea. A positive correlation was observed between maximum Sea Surface Temperature (SSTmax) and the depth at which M. expansum was collected, suggesting that this species may compensate for higher SST by growing in deeper habitats where the temperature is lower. The latter indicates that geographic shifts in the distribution of coastal species as a result of global warming can possibly be mitigated by changes in the depth profile at which these species occur. Mesophyllum expansum, an important builder of Mediterranean coralligenous habitats, may be a good target species to assess its response to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号