首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
For optimal quality, memory CD8(+) T cells require CD4(+) T cell help. We have examined whether CD4(+) T cells require CD27 to deliver this help, in a model of intranasal OVA protein immunization. CD27 deficiency reduced the capacity of CD4(+) T cells to support Ag-specific CD8(+) T cell accumulation at the tissue site after primary and secondary immunization. CD27-dependent CD4(+) T cell help for the memory CD8(+) T cell response was delivered during priming. It did not detectably affect formation of CD8(+) memory T cells, but promoted their secondary expansion. CD27 improved survival of primed CD4(+) T cells, but its contribution to the memory CD8(+) T cell response relied on altered CD4(+) T cell quality rather than quantity. CD27 induced a Th1-diagnostic gene expression profile in CD4(+) T cells, which included the membrane molecule MS4A4B. Accordingly, CD27 increased the frequency of IFN-gamma- and IL-2-producing CD4(+) T cells. It did not affect CD40L expression. Strikingly, MS4A4B was also identified as a unique marker of CD8(+) memory T cells that had received CD27-proficient CD4(+) T cell help during the primary response. This apparent imprinting effect suggests a role for MS4A4B as a downstream effector in CD27-dependent help for CD8(+) T cell memory.  相似文献   

2.
Ag-specific CD8(+) T cells immunized in the absence of CD4(+) T cell help, so-called "unhelped" CD8(+) T cells, are defective in function and survival. We investigated the role of the proapoptotic molecule TRAIL in this defect. We first demonstrate that TRAIL does not contribute to the CD8(+) T cell response to Listeria monocytogenes strain expressing OVA (LmOVA) in the presence of CD4(+) T cells. Secondly, we generated mice doubly deficient in CD4(+) T cells and TRAIL and analyzed their CD8(+) T cell response to LmOVA. Memory CD8(+) T cells in double-deficient mice waned over time and were not protective against rechallenge, similar to their TRAIL-sufficient unhelped counterparts. To avoid the effects of CD4(+) T cell deficiency during memory maintenance, and to address whether TRAIL plays a role in the early programming of the CD8(+) T cell response, we performed experiments using heterologous prime and early boost immunizations. We did not observe activation-induced cell death of unhelped CD8(+) T cells when mice were infected with followed vaccinia virus expressing OVA 9 days later by LmOVA infection. Furthermore, primary immunization of CD4(+) T cell-deficient mice with cell-associated Ag followed by LmOVA infection did not reveal a role for TRAIL-mediated activation-induced cell death. Overall, our results suggest that CD4(+) T cell help for the CD8(+) T cell response is not contingent on the silencing of TRAIL expression and prevention of TRAIL-mediated apoptosis.  相似文献   

3.
Recent studies have shown that CD4(+) T cell help is required for the generation of memory CD8(+) T cells that can proliferate and differentiate into effector cells on Ag restimulation. The importance of help for primary CD8(+) T cell responses remains controversial. It has been suggested that help is not required for the initial proliferation and differentiation of CD8(+) T cells in vivo and that classical models of helper-dependent responses describe impaired secondary responses to Ag in vitro. We have measured primary CD8(+) T cell responses to peptide-pulsed dendritic cells in mice by cytokine ELISPOT and tetramer staining. No responses were detected in the absence of help, either when normal dendritic cells were injected into MHC II-deficient mice or when MHC II-deficient dendritic cells were injected into normal mice. Thus, the primary in vivo CD8(+) T cell response depends absolutely on help from CD4(+) T cells in our experimental system.  相似文献   

4.
Upon adoptive transfer into histocompatible mice, naive CD8(+) T cells stimulated ex vivo by TCR+IL-4 turn into long-lived functional memory cells. The liver contains a large number of so formed memory CD8(+) T cells, referred to as liver memory T cells (T(lm)) in the form of cell clusters. The CD62L(low) expression and nonlymphoid tissue distribution of T(lm) cells are similar to effector memory (T(em)) cells, yet their deficient cytotoxicity and IFN-γ inducibility are unlike T(em) cells. Adoptive transfer of admixtures of TCR+IL-4-activated Vβ8(+) and Vβ5(+) CD8(+) T cells into congenic hosts reveals T(lm) clusters that are composed of all Vβ5(+) or Vβ8(+), not mixed Vβ5(+)/Vβ8(+) cells, indicating that T(lm) clusters are formed by clonal expansion. Clonally expanded CD8(+) T cell clusters are also seen in the liver of Listeria monocytogenes-immune mice. T(lm) clusters closely associate with hepatic stellate cells and their formation is IL-15/IL-15R-dependent. CD62L(low) T(LM) cells can home to the liver and secondary lymphoid tissues, remain CD62L(low), or acquire central memory (T(cm))-characteristic CD62L(hi) expression. Our findings show the liver as a major site of CD8(+) memory T cell growth and that T(lm) cells contribute to the pool of peripheral memory cells. These previously unappreciated T(lm) characteristics indicate the inadequacy of the current T(em)/T(cm) classification scheme and help ongoing efforts aimed at establishing a unifying memory T cell development pathway. Lastly, our finding of T(lm) clusters suggests caution against interpreting focal lymphocyte infiltration in clinical settings as pathology and not normal physiology.  相似文献   

5.

Background

We have previously demonstrated that temporary depletion of CD4 T cells in mice with progressive B16 melanoma, followed by surgical tumor excision, induces protective memory CD8 T cell responses to melanoma/melanocyte antigens. We also showed that persistence of these CD8 T cells is supported, in an antigen-dependent fashion, by concurrent autoimmune melanocyte destruction. Herein we explore the requirement of CD4 T cell help in priming and maintaining this protective CD8 T cell response to melanoma.

Methodology and Principal Findings

To induce melanoma/melanocyte antigen-specific CD8 T cells, B16 tumor bearing mice were depleted of regulatory T cells (Treg) by either temporary, or long-term continuous treatment with anti-CD4 (mAb clone GK1.5). Total depletion of CD4 T cells led to significant priming of IFN-γ-producing CD8 T cell responses to TRP-2 and gp100. Surprisingly, treatment with anti-CD25 (mAb clone PC61), to specifically deplete Treg cells while leaving help intact, was ineffective at priming CD8 T cells. Thirty to sixty days after primary tumors were surgically excised, mice completely lacking CD4 T cell help developed autoimmune vitiligo, and maintained antigen-specific memory CD8 T cell responses that were highly effective at producing cytokines (IFN-γ, TNF-α, and IL-2). Mice lacking total CD4 T cell help also mounted protection against re-challenge with B16 melanoma sixty days after primary tumor excision.

Conclusions and Significance

This work establishes that CD4 T cell help is dispensable for the generation of protective memory T cell responses to melanoma. Our findings support further use of CD4 T cell depletion therapy for inducing long-lived immunity to cancer.  相似文献   

6.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

7.
CD8+ T cells can be primed in vitro to produce IL-4.   总被引:19,自引:0,他引:19  
IL-4 production by T lymphocytes from naive mice in response to stimulation by plate-bound anti-CD3 is concentrated among CD4+ T cells. In vitro stimulation of lymph node T cells with anti-CD3 plus IL-2 and IL-4 strikingly increases the frequency of cells that produce IL-4 in response to subsequent stimulation with anti-CD3 plus IL-2. Separation of these primed cell populations into CD4+ and CD8+ T cell by cell sorting reveals that the frequency of IL-4-producing cells in both population is similar. Verification that CD8+ T cells produce IL-4 is provided by the capacity of anti-IL-4 mAb to inhibit the response of the indicator cell line to the growth factor produced by the primed cells and by detection of IL-4 by an IL-4-specific ELISA. The in vitro "priming" of CD8+ T cells to produce IL-4 is not dependent on the presence of CD4+ T cells because highly purified CD8+ T cells can be stimulated to develop into cells capable of producing IL-4 by culture with plate-bound anti-CD3 plus IL-2 and IL-4.  相似文献   

8.
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.  相似文献   

9.

Background

Using in vivo mouse models, the mechanisms of CD4+ T cell help have been intensively investigated. However, a mechanistic analysis of human CD4+ T cell help is largely lacking. Our goal was to elucidate the mechanisms of human CD4+ T cell help of CD8+ T cell proliferation using a novel in vitro model.

Methods/Principal Findings

We developed a genetically engineered novel human cell-based artificial APC, aAPC/mOKT3, which expresses a membranous form of the anti-CD3 monoclonal antibody OKT3 as well as other immune accessory molecules. Without requiring the addition of allogeneic feeder cells, aAPC/mOKT3 enabled the expansion of both peripheral and tumor-infiltrating T cells, regardless of HLA-restriction. Stimulation with aAPC/mOKT3 did not expand Foxp3+ regulatory T cells, and expanded tumor infiltrating lymphocytes predominantly secreted Th1-type cytokines, interferon-γ and IL-2. In this aAPC-based system, the presence of autologous CD4+ T cells was associated with significantly improved CD8+ T cell expansion in vitro. The CD4+ T cell derived cytokines IL-2 and IL-21 were necessary but not sufficient for this effect. However, CD4+ T cell help of CD8+ T cell proliferation was partially recapitulated by both adding IL-2/IL-21 and by upregulation of IL-21 receptor on CD8+ T cells.

Conclusions

We have developed an in vitro model that advances our understanding of the immunobiology of human CD4+ T cell help of CD8+ T cells. Our data suggests that human CD4+ T cell help can be leveraged to expand CD8+ T cells in vitro.  相似文献   

10.
Using transgenic mice that express a constitutively active version of STAT5b, we demonstrate that STAT5 plays a key role in governing B cell development and T cell homeostasis. STAT5 activation leads to a 10-fold increase in pro-B, but not pro-T, cells. Conversely, STAT5 signaling promotes the expansion of mature alphabeta T cells (6-fold increase) and gammadelta and NK T cells (3- to 4-fold increase), but not of mature B cells. In addition, STAT5 activation has dramatically divergent effects on CD8(+) vs CD4(+) T cells, leading to the selective expansion of CD8(+) memory-like T cells and CD4(+)CD25(+) regulatory T cells. These results establish that activation of STAT5 is the primary mechanism underlying both IL-7/IL-15-dependent homeostatic proliferation of naive and memory CD8(+) T cells and IL-2-dependent development of CD4(+)CD25(+) regulatory T cells.  相似文献   

11.
We have shown that alloreactive CD8 T cell activation may proceed via CD4-dependent and CD4-independent pathways, and that CD8 T cell activation in Ag-primed animals is independent of CD154 costimulation. In this report, we further analyzed the activation and function of alloreactive CD8 CTL effectors in CD4 knockout (KO) skin/cardiac allograft recipients. FACS analysis showed that alloreactive CD8 T cells were activated at a significantly reduced level in CD4 KO mice. Importantly, these helpless CD8 T cells failed to develop CD154 blockade resistance following reactivation by the same alloantigen, indicative of defective memory formation. Only transient CD4 help was required, as short-term CD4 blockade at the time of first skin graft challenge only delayed alloreactive CD8 activation, without affecting the CD8 T cell memory response to a second skin graft. Moreover, postoperative CD4 blockade had no effect on alloreactive CD8 activation. Alloreactive CD8 cells generated in the absence of CD4 help exhibited decreased effector responses. Interestingly, intragraft induction of T cell-targeted chemokines early after transplant was also dependent on CD4 help, as the induction kinetics of CXCL9 and CCL5 in CD4 KO recipients was significantly delayed, coupled with similarly delayed infiltration by CD3/CD8 cells. Remarkably, helpless CD8 cells ultimately entering the graft still displayed significantly diminished T cell effector molecules (IFN-gamma, granzyme B). Thus, CD4 help is critical for alloreactive CD8 activation, function, and memory formation.  相似文献   

12.
Ag-experienced or memory T cells have increased reactivity to recall Ag, and can be distinguished from naive T cells by altered expression of surface markers such as CD44. Memory T cells have a high turnover rate, and CD8(+) memory T cells proliferate upon viral infection, in the presence of IFN-alphabeta and/or IL-15. In this study, we extend these findings by showing that activated NKT cells and superantigen-activated T cells induce extensive bystander proliferation of both CD8(+) and CD4(+) memory T cells. Moreover, proliferation of memory T cells can be induced by an IFN-alphabeta-independent, but IFN-gamma- or IL-12-dependent pathway. In these conditions of bystander activation, proliferating memory (CD44(high)) T cells do not derive from activation of naive (CD44(low)) T cells, but rather from bona fide memory CD44(high) T cells. Together, these data demonstrate that distinct pathways can induce bystander proliferation of memory T cells.  相似文献   

13.
Help from CD4 T cells may be required for optimal generation and maintenance of memory CD8 T cells and also for optimal Ag reactivation. We examined whether the helper cell and the CD8 killer cell need to have the same Ag specificity for help to be effective during interactions of memory T cells with mature APC. This is important because virus and tumor Ag-specific CD4 T cell responses are selectively impaired in several chronic viral infections and malignancies. We performed studies in vitro and in vivo and found that functional memory CD4 T cells generated from a distinct antigenic source (heterospecific helpers) could provide direct and effective help to memory CD8 T cells. Functional heterospecific memory CD4 T cells could also rescue secondary CD8 T cell responses in an experimental tumor model in which homospecific CD4 help was impaired. This could provide a rationale for immunotherapy strategies designed to bypass impaired homospecific help.  相似文献   

14.
CD4 Th cells play critical roles in stimulating Ab production and in generating primary or maintaining memory CTL. The requirement for CD4 help in generating and maintaining CTL responses has been reported to vary depending on the vector or method used for immunization. In this study, we examined the requirement for CD4 T cell help in generating and maintaining CTL responses to an experimental AIDS vaccine vector based on live recombinant vesicular stomatitis virus (VSV) expressing HIV Env protein. We found that primary CD8 T cell responses and short-term memory to HIV Env and VSV nucleocapsid (VSV N) proteins were largely intact in CD4 T cell-deficient mice. These responses were efficiently recalled at 30 days postinfection by boosting with vaccinia recombinants expressing HIV Env or VSV N. However, by 60 days postinfection, the memory/recall response to VSV N was lost in CD4-deficient mice, while the recall response HIV Env was partially maintained in the same animals for at least 90 days. This result indicates that there are epitope-specific requirements for CD4 help in the maintenance of memory CD8 T cell responses. Our results also suggest that choice of epitopes might be critical in an AIDS vaccine designed to protect against disease in the context of reduced or declining CD4 T cell help.  相似文献   

15.
Effector memory T cells (T(EM)) have an important role in immunity against infection. However, little is known about the factors regulating T(EM) maintenance and proliferation. In this study, we investigated the role of direct interactions between CD4(+) and CD8(+) T cells (TC) for human T(EM) expansion. Proliferation of separated or mixed CD4(+) and CD8(+)T(EM) populations was analyzed after polyclonal stimulation in vitro. Compared to each isolated subset mixed T(EM) populations showed increased proliferation and expansion of both CD4(+) and CD8(+)T(EM) subpopulations. Combined activation of CD4(+) and CD8(+) memory T cells (Tmem) induced an increased expression of CD40L and CD40 on both populations. Subsequently, CD40/CD40L caused a bi-directional stimulation of CD40(+)CD4(+)T(EM) by CD40L(+)CD8(+)T(EM) and of CD40(+)CD8(+)T(EM) by CD40L(+)CD4(+)T(EM). Blocking of CD40L on activated CD8(+)T(EM) selectively inhibited proliferation of CD4(+)T(EM), while blocking of CD40L on CD4(+)T(EM) abrogated proliferation of CD8(+)T(EM). Taken together, we demonstrate for the first time that the expression of CD40L is exploited on the one hand by CD8(+)T(EM) to increase the proliferation of activated CD4(+)T(EM) and on the other hand by CD4(+)T(EM) to support the expansion of activated CD8(+)T(EM). Thus, efficient T(EM) expansion requires bi-directional interactions between CD4(+) and CD8(+)T(EM) cells.  相似文献   

16.
Although many studies have investigated the requirement for CD4(+) T cell help for CD8(+) T cell responses to acute viral infections that are fully resolved, less is known about the role of CD4(+) T cells in maintaining ongoing CD8(+) T cell responses to persistently infecting viruses. Using mouse polyoma virus (PyV), we asked whether CD4(+) T cell help is required to maintain antiviral CD8(+) T cell and humoral responses during acute and persistent phases of infection. Though fully intact during acute infection, the PyV-specific CD8(+) T cell response declined numerically during persistent infection in MHC class II-deficient mice, leaving a small antiviral CD8(+) T cell population that was maintained long term. These unhelped PyV-specific CD8(+) T cells were functionally unimpaired; they retained the potential for robust expansion and cytokine production in response to Ag rechallenge. In addition, although a strong antiviral IgG response was initially elicited by MHC class II-deficient mice, these Ab titers fell, and long-lived PyV-specific Ab-secreting cells were not detected in the bone marrow. Finally, using a minimally myeloablative mixed bone marrow chimerism approach, we demonstrate that recruitment and/or maintenance of new virus-specific CD8(+) T cells during persistent infection is impaired in the absence of MHC class II-restricted T cells. In summary, these studies show that CD4(+) T cells differentially affect CD8(+) T cell responses over the course of a persistent virus infection.  相似文献   

17.
Dissecting the mechanisms of T cell-mediated immunity requires the identification of functional characteristics and surface markers that distinguish between activated and memory T lymphocytes. In this study, we compared the rates of cytokine production by virus-specific primary and memory CD8+ T cells directly ex vivo. Ag-specific IFN-gamma and TNF-alpha production by both primary and long-term memory T cells was observed in 相似文献   

18.
Stimulation of CD40 on APCs through CD40L expressed on helper CD4+ T cells activates and "licenses" the APCs to prime CD8+ T cell responses. Although other stimuli, such as TLR agonists, can also activate APCs, it is unclear to what extent they can replace the signals provided by CD40-CD40L interactions. In this study, we used an adoptive transfer system to re-examine the role of CD40 in the priming of naive CD8+ T cells. We find an approximately 50% reduction in expansion and cytokine production in TCR-transgenic T cells in the absence of CD40 on all APCs, and on dendritic cells in particular. Moreover, CD40-deficient and CD40L-deficient mice fail to develop endogenous CTL responses after immunization. Surprisingly, the role for CD40 and CD40L are observed even in the absence of CD4+ T cells; in this situation, the CD8+ T cell itself provides CD40L. Furthermore, we show that although TLR stimulation improves T cell responses, it cannot fully substitute for CD40. Altogether, these results reveal a direct and unique role for CD40L on CD8+ T cells interacting with CD40 on APCs that affects the magnitude and quality of CD8+ T cell responses.  相似文献   

19.
About a third of mouse splenic macrophage (M phi) progenitors give rise to cloned progeny that constitutively induce the selective proliferation of naive allogeneic CD8+ T cells in a CD4+ helper cell-independent manner--a response that is inhibited by mAb to the MHC class I molecules present on the M phi. Colony-mixing experiments indicated that the failure of most M phi clones to present allo-Ag was not due to their suppression of the ability of CD8+ cells to respond, nor did the nonpresenting clones interfere with the activity of the allo-Ag presenting M phi. The allo-Ag presenting phenotypes were found to be a stable characteristic in a panel of cell lines derived from individual clones of M phi. Analysis of the cell lines revealed that the differential expression of allo-APC activity could not be attributed to the levels of MHC class I molecules; rather, the cell lines and the primary M phi clones differ in their expression of a cell-associated costimulator molecule that likely functions to induce the expression of the IL-2R on and the secretion of IL-2 from the T cells.  相似文献   

20.
Under noninflammatory conditions, both naive and central memory CD8 T cells can be eliminated in the periphery with either soluble peptide or cross-presented Ag. Here, we assess the tolerance susceptibility of tissue-resident memory CD8 T cells in mice to these two forms of tolerogen. Soluble peptide specifically eliminated the majority of memory CD8 cells present in both lymphoid and extralymphoid tissues including lung and liver, but was unable to reduce the number present in the CNS. In contrast, systemic cross-presentation of Ag by dendritic cells resulted in successful elimination of memory cells only from the spleen, with no significant reduction in the numbers of tissue-resident memory cells in the lung. The fact that tissue-resident memory cells were unable to access cross-presented Ag suggests that either the memory cells in the lung do not freely circulate out of the tissue, or that they circulate through a region in the spleen devoid of cross-presented Ag. Thus, although tissue-resident memory cells are highly susceptible to tolerance induction, both the form of tolerogen and location of the T cells can determine their accessibility to tolerogen and the degree to which they are successfully deleted from specific tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号