首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Domoney  R. Casey 《Planta》1987,170(4):562-566
The patterns of accumulation of three classes of legumin mRNA from Pisum sativum have been followed through seed development by cell-free translation and hybridization to complementary DNAs. Maximum amounts of mRNA were found at 19 days after flowering (DAF) for two classes and at 24 DAF for the third class. The proportions of the three classes varied through development: the RNA species which was 40% of the total legumin mRNA at 14 DAF represented 15–20% of the total at 25–27 DAF, whereas a second mRNA species represented approx. 30% and 70% at the same stages, respectively. Based on these results, some deductions about the possible contribution of individual genes within classes are made.Abbreviations cDNA complementary DNA - DAF days after flowering - IgG immunoglobulin G - SSC standard saline citrate (0.15 M NaCl, 0.015 M trisodium citrate)  相似文献   

2.
Activities of some key enzymes of carbon metabolism sucrose synthase, acid and alkaline invertase, phosphoenol pyruvate carboxylase, malic enzyme and isocitrate dehydrogenase were investigated in relation to the carbohydrate status in lentil pods. Sucrose remained the dominant soluble sugar in the pod wall and seed, with hexoses (glucose and fructose) present at significantly lower levels. Sucrose synthase is the predominant sucrolytic enzyme in the developing seeds of lentil (Lens culinaris L.). Acid invertase was associated with pod elongation and showed little activity in seeds. Sucrose breakdown was dominated by alkaline invertase during the development of podwall, while both the sucrose synthase and alkaline invertase were active in the branch of inflorescence. A substantial increase of sucrolytic enzymes was observed at the time of maximum seed filling stage (10–20 DAF) in lentil seed. The pattern of activity of sucrose synthase highly paralleled the phase of rapid seed filling and therefore, can be correlated with seed sink strength. It seems likely that the fruiting structures of lentil utilize phosphoenol pyruvate carboxylase for recapturing respired carbon dioxide. Higher activities of isocitrate dehydrogenase and malic enzyme in the seed at the time of rapid seed filling could be effectively linked to the deposition of protein reserves.  相似文献   

3.
The activities of sucrolytic enzymes viz. sucrose synthase and invertases were compared in developing pods of two genotypes of lentil differing in seed weight. Biomass accumulation of both the podwall and seed of ‘large’ genotype was higher during development as compared to the ‘small’ genotype. High activity of acid invertase together with prolonged activity of alkaline invertase in podwall of ‘large’ genotype may lead to longer cell division phase resulting in its larger size and biomass. Greater biomass of podwall could be responsible for providing more reserves for the developing seed hence determining its size. Higher alkaline invertase activity in ‘large’ seed from 15–20 DAF can be correlated to the sustained sucrolytic conditions for producing more cells required for its larger size. Increased levels of sucrose synthase in ‘large’ seed especially during maturation phase suggest the role of this enzyme in enhancing the seed sink strength.  相似文献   

4.
5.
蔗糖合酶(SuSy)是植物蔗糖代谢关键酶之一,该研究利用反向遗传学手段,采用RNAi技术抑制拟南芥中AtSUS3基因的表达,测定纯系转基因植株的抽苔率,并对酶活性、糖含量等指标以及糖代谢相关基因的表达进行了检测,探讨SuSy在植物发育中的作用。结果显示:(1)转基因拟南芥的抽苔平均早于野生型植株2~3d,且优先3~4d完成抽苔。(2)开花后生长天数对角果蔗糖和葡萄糖含量有显著影响,而对果糖含量影响不显著;开花后5d时,野生型株系的葡萄糖含量显著高于转基因株系SUS3-2,至15d时,两种转基因株系葡萄糖含量均显著低于野生型株系。(3)开花后生长天数对SuSy、SPS、INV的活性均有显著影响,随开花时间延长,野生型株系SuSy活性显著低于转基因株系,而SPS和INV则相反。(4)AtSUS3基因沉默对其他糖代谢基因有不同程度的影响,开花后5d时,转基因植株的角果中AtCesA1、AtCesA7和AtCINV1的表达量较野生型都有所增加;开花后15d时,转基因植株的角果中AtCesA1、AtCesA7的表达量较野生型高,而AtCINV、AtCwINV的表达量比野生型低。研究表明,拟南芥AtSUS3基因沉默后,在正常生长条件下未造成植株发育异常,同时还可能通过同源家族中其他SuSy的表达水平增加,促进了该酶及糖代谢相关基因整体水平的增加,有助于角果成熟。  相似文献   

6.
磷酸蔗糖合酶(sucrose phosphate synthase,SPS)是植物中蔗糖合成的主要限速酶,影响植物的生长发育和果实中蔗糖的含量。为探明苹果中SPS基因家族特性及其在蔗糖合成中的作用,该研究从苹果基因组中分离了MdSPS家族基因,分析了它们的进化关系以及mRNA表达特性与酶活性和蔗糖含量的关系。结果显示:(1)在苹果基因组中有8个SPS家族基因表达,它们分别属于双子叶植物的3个SPS亚家族。(2)荧光定量PCR分析显示,苹果C类的MdSPS6基因和A类的MdSPS1a/b基因是苹果中表达丰度最高的SPS基因成员,其中MdSPS6在苹果成熟果中表达丰度最高,其次是成熟叶片,而MdSPS1a/b在不积累蔗糖的幼果中表达丰度最高。(3)在果实发育过程中,除MdSPS1a/b之外,其它5个苹果MdSPS家族基因均随果实的生长表达丰度增加,与SPS活性和蔗糖含量明显呈正相关关系。研究表明,C类家族MdSPS6是苹果果实发育后期和叶片中蔗糖合成的主要SPS基因。  相似文献   

7.
8.
The presence of sucrose and the enzymes related to sucrose metabolism, i.e. sucrose synthase (SS) (UDP-glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13), sucrose phosphate synthase (SPS) (UDP-glucose: D-fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.14) and invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was demonstrated in Prototheca zopfii, a colorless alga. The levels of enzyme activities were lower than those obtained in Chlorella vulgaris, which is generally considered the photosynthetic counterpart of P. zopfii. Whem enzyme activities were measured in bleached cells of C. vulgaris, the levels were of the same order than those found in P. zopfii. These results would indicate that the sucrose metabolizing enzymes are not related to the algae ability to carry on photosynthesis.  相似文献   

9.
A full-length cDNA encoding sucrose synthase was isolated from the tropical epiphytic CAM orchid Mokara Yellow. The cDNA is 2748bp in length containing an open reading frame of 2447bp encoding 816 amino acids with a predicted molecular mass of 93.1 kDa. The deduced amino acid sequence of M. Yellow sucrose synthase (Msus1) shares more than 80% identity with those from other monocotyledonous plants. The sucrose synthase gene was demonstrated to encode a functional sucrose synthase protein by expression as recombinant protein in Escherichia coli. Northern blot analysis showed that the expression pattern of Msus1 mRNA is tissue specific with highest levels in strong sinks such as expanding leaves and root tips, but not detectable in mature leaves and flowers. Incubation with sugars resulted in a significant increase in the steady-state Msus1 mRNA levels in shoots of seedlings.  相似文献   

10.
11.
Vigeolas H  Geigenberger P 《Planta》2004,219(5):827-835
Glycerol-3-phosphate (glycerol-3P) is a primary substrate for triacylglycerol synthesis. In the present study, changes in the levels of glycerol-3P during rape (Brassica napus L.) seed development and the influence of manipulating glycerol-3P levels on triacylglycerol synthesis were investigated. (i) Glycerol-3P levels were high in young seeds and decreased during seed development at 30 and 40 days after flowering (DAF), when lipid accumulation was maximal. (ii) To manipulate glycerol-3P levels in planta, various concentrations of glycerol were injected directly into 30-DAF seeds, which remained otherwise intact within their siliques and attached to the plant. Injection of 0–10 nmol glycerol led to a progressive increase in seed glycerol-3P levels within 28 h. (iii). Increased levels of glycerol-3P were accompanied by an increase in the flux of injected [14C]sucrose into total lipids and triacylglycerol, whereas fluxes to organic acids, amino acids, starch, protein and cell walls were not affected. (iv) When [14C]acetate was injected into seeds, label incorporation into total lipids and triacylglycerol increased progressively with increasing glycerol-3P levels. (v) There was a strong correlation between the level of glycerol-3P and the incorporation of injected [14C]acetate and [14C]sucrose into triacylglycerol. (v) The results provide evidence that the prevailing levels of glycerol-3P co-limit triacylglycerol synthesis in developing rape seeds.Abbreviations DAF Days after flowering - DAG Diacylglycerol - G3PAT Glycerol-3-phosphate acyltransferase - Glycerol-3P Glycerol-3-phosphate - PA Phosphatidic acid - PC Phosphatidylcholine - TAG Triacylglycerol,  相似文献   

12.
The role of soluble sugars in desiccation tolerance was investigated in seeds of two species from the genus Acer: Norway maple (Acer platanoides L.) — tolerant and sycamore (Acer pseudoplatanus L.) — intolerant to dehydration. During two years of observations it was found that seeds of Norway maple acquire desiccation tolerance at the end of August i.e. about 125 days after flowering (DAF). During seed development, the transition from intolerant to tolerant state in Norway maple seeds was accompanied by the accumulation in seed tissues of raffinose, stachyose and sucrose. The sucrose/raffinose ratio in Norway maple seeds was lower than in sycamore. In mature Norway maple seeds sucrose and raffinose contents were higher than in sycamore. It was concluded, that soluble sugars such as sucrose, raffinose and stachyose may play an important role in desiccation tolerance and/or intolerance of Norway maple and sycamore seeds. Differential thermal analysis (DTA) was used to study the relationship between desiccation sensitivity and the state of water in seed tissues. The level of non-freezable water was the same in both analysed seed species, but the temperature of water crystallization during desiccation was lower in sycamore seeds.  相似文献   

13.
Experiments were carried out to investigate whether sucrose synthase (Susy) catalyses a readily reversible reaction in vivo in potato (Solanum tuberosum L.) tubers, Ricinus communis L. cotyledons, and heterotrophic Chenopodium rubrum L. cell-suspension cultures. (i) The contents of sucrose, fructose, UDP and UDP-glucose were measured and the mass-action ratio compared with the theoretical equilibrium constant. In all three tissues the values were similar. (ii) Evidence for rapid turnover of label in the sucrose pool was obtained in pulse-chase experiments with potato discs and with intact tubers attached to the plant. The unidirectional rates of sucrose synthesis and degradation were considerably higher than the net flux through the sucrose pool in the tubers. (iii) Labelling of the glucosyl and fructosyl moieties of sucrose from [14C]glucose in the presence of unlabelled fructose provided evidence that Susy contributes to the movement of label into sucrose. Methods for estimating the contribution of sucrose-phosphate synthase and Susy are presented and it is shown that their relative contribution varies. For example, the contribution of Susy is high in developing tubers and is negligible in harvested tubers which contain low Susy activity. (iv) The absolute values of the forward (v+1) and backward (v?1) reaction direction of Susy are calculated from the kinetic labelling data. The estimated values of v+1 and v?1 are comparable, and much higher than the net flux through the sucrose pool. (v) The estimated concentrations of the substrates and products of Susy in tubers are comparable to the published K m values for potato-tuber Susy. (vi) It is concluded that Susy catalyses a readily reversible reaction in vivo and the relevance of this conclusion is discussed with respect to the regulation of sucrose breakdown and the role of Susy in phloem unloading.  相似文献   

14.
Several cDNA clones encoding two different ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) polypeptides denoted VfAGPC and VfAGPP were isolated from a cotyledonary library of Vicia faba L. Both sequences are closely related to AGPase small-subunit sequences from other plants. Whereas mRNA levels of VfAGPP were equally high in developing cotyledons and leaves, the mRNA of VfAGPC was present in considerable amounts only in cotyledons. During development of cotyledons, both mRNAs accumulated until the beginning of the desiccation phase and disappeared afterwards. The increase of AGPase activity in cotyledons during the phase of storage-product synthesis was closely followed by the accumulation of starch. The AGPase activity in crude extracts of cotyledons was insensitive to 3-phosphoglycerate whereas the activity from leaves could be activated more than five-fold. Inorganic phosphate inhibited the enzyme from both tissues but was slightly more effective on the leaf enzyme. There was a correlation at the cellular level between the distribution of VfAGPP and VfAGPC mRNAs and the accumulation of starch, as studied by in-situ hybridisation and by histochemical staining in parallel tissue sections of developing seeds, respectively. During the early phase of seed development (12–15 days after fertilization) VfAGPase mRNA and accumulation of starch were detected transiently in the hypodermal, chlorenchymal and outer parenchymal cell layers of the seed coat but not in the embryo. At 25 days after fertilization both synthesis of VfAGPase mRNA and biosynthesis of starch had started in parenchyma cells of the inner adaxial zone of the cotyledons. During later stages, the expression of VfAGPase and synthesis of starch extended over most of the cotyledons but were absent from peripheral cells of the abaxial zone, provascular and procalyptral cells.Abbreviations AGPase ADP-glucose pyrophosphorylase - DAF days after fertilization - Glc1P glucose-1-phosphate - 3-PGA 3-phosphoglycerate - VfAGPC AGPase subunit of Vicia faba mainly expressed in cotyledons - VfAGPP AGPase subunit of Vicia faba mainly expressed in leaves and cotyledons - pVfAGPC, pVfAGPP plasmids containing VfAGPC and VfAGPP, respectively This work was supported by the Bundesministerium für Forschung und Technologie BCT 0389, Molekular- und Zellbiologie von höheren Pflanzen und Pilzen. U.W acknowledges additional support by the Fonds der chemischen Industrie. We thank Elsa Fessel for excellent technical assistance.  相似文献   

15.
We investigated the spatial and temporal expression patterns of two rice calcium-dependent protein kinases (CDPKs), OsCDPK2 and OSCDPK11, using isoform-specific antisera. Bands of the expected molecular sizes for OsCDPK2 (59 kDa) and OsCDPK11 (61 kDa) were detected on western blots. OsCDPK2 and OsCDPK11 mRNA and protein levels increased in unison during flower development. However, at the onset of seed development, the protein expression profiles diverged significantly. OsCDPK2 protein was expressed at low levels during early seed development, but increased to high levels that were maintained in later stages (20 days after fertilisation, DAF). Conversely, OsCDPK11 protein levels were high at the beginning of seed development, but fell rapidly from 10 DAF onwards. This decrease in the level of OsCDPK11 protein was associated with the abundant synthesis of a truncated mRNA species. OsCDPK2 expression was also closely associated with light perception. OsCDPK2 protein was barely detectable in green leaves exposed to light, but levels increased sharply when plants were shifted to darkness. Initially, this increase reflected a rapid elevation in the levels of OsCDPK2 mRNA, which was normally located in the mesophyll. Conversely, OsCDPK11 mRNA and protein levels were unaffected by light. These data strongly indicate that two rice CDPK isoforms have different functions in seed development and in response to light in leaves.  相似文献   

16.
17.
The inhibitory effects of sucrose on rates of sucrose synthesis by sucrose phosphate synthase (SPS) from the maize scutellum and on net rates of sucrose production in maize scutellum slices from added glucose or fructose were studied. Scutellum extracts were prepared by freezing and thawing scutellum slices in buffer. The extracts contained SPS and sucrose phosphate phosphatase, but were free of sucrose synthase. SPS activity was calculated from measurement of UDP formation in the presence of UDPG, fructose-6-P and sucrose. The ranges of metabolite concentrations used were those estimated to be in scutellum slices after incubation in water or fructose for periods up to 5 hr. UDPG and fructose-6-P also were added at concentrations that saturated SPS. At saturating substrate levels, sucrose inhibition of SPS was less than that when tissue levels of substrates were used. With tissue levels of substrates and sucrose concentrations up to ca 166 mM, sucrose inhibitions of sucrose synthesis in vitro by SPS were similar to those observed in vivo. However, as the sucrose concentration rose above 166 mM, SPS activity was not inhibited further, whereas there was a further sharp decline in sucrose production by the slices. It is concluded that sucrose synthesis in vivo is controlled by sucrose inhibition of SPS over a considerable range of internal sucrose concentrations.  相似文献   

18.
19.
20.
Sucrose Metabolism in Lupinus albus L. Under Salt Stress   总被引:3,自引:0,他引:3  
Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号