首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival of colony-forming units-spleen (CFU-S) was measured after single doses of photons or heavy charged particles from the BEVALAC. The purposes were to define the radiosensitivity to heavy ions used medically and to evaluate relationships between relative biological effectiveness (RBE) and dose-averaged linear energy transfer (LET infinity). In in vitro irradiation experiments. CFU-S suspensions were exposed to 220 kVp X rays or to 20Ne (372 MeV/micron) or 40Ar (447 MeV/micron) particles in the plateau portion of the Bragg curve. In in vivo irradiation experiments, donor mice from which CFU-S were harvested were exposed to 12C (400 MeV/micron). 20Ne (400 or 670 MeV/micron), or 40Ar (570 MeV/micron) particles in Bragg peaks spread to 4 or 10 cm by spiral ridge filters. Based on RBE at 10 survival, the maximum RBE of 2.1 was observed for 40Ar particles characterized by an LET infinity of approximately 100 keV/micron. Lower RBEs were determined at lower or higher estimated values of LET infinity and ranged from 1.1 for low energy 40Ar particles to 1.5-1.6 for low energy 12C and 20Ne. The responses of CFU-S are compared with responses of other model systems to heavy charged particles and with the reported sensitivity of CFU-S to neutrons of various energies. The maximum RBE reported here, 2.1 for high energy 40Ar particles, is somewhat lower than values reported for fission-spectrum neutrons, and is appreciably lower than values for monoenergetic 0.43-1.8 MeV neutrons. Low energy 12C and 20Ne particles have RBEs in the range of values reported for 14.7 MeV neutrons.  相似文献   

2.
Chinese hamster cells (V79-4), human lymphocytes and mouse ascites cell were exposed to gamma-rays and heavy ions (4He and 12C). Sedimentation of complexes containing DNA was studied after cell lysis by centrifugation in a neutral sucrose gradient. The distinctions noted after irradiation with gamma-rays and heavy ions are consistent with the idea of the superhelical organization of DNA into discrete and membrane-bound compact units. According to the estimates made the diameter of these complexes was approximately 0.2 micron and DNA content, about 2 X 10(9) dalton.  相似文献   

3.
The effectiveness of S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR 2721) to protect against the heavy-charged particle beams with dose-averaged LET infinity's ranging from 26 to 260 keV/micron was studied using the marrow colony forming units-spleen as a model system. WR 2721 (400 mg/kg) was injected ip 30 min before whole-body irradiation in the plateau ionization region of the Bragg curve. Significant protection was observed at 26, 51, and 135 keV/micron LET values where the data were collected with 20Ne, 28Si, and 40Ar ions, respectively. The largest component of protection was the slope change, where at LET values of 26 and 51 keV/micron the DMFs (slope) were 2.1 and 2.3, respectively, which are very close to the gamma-ray value of 2.4 (gamma LET approximately equal to 0.2 keV/micron). Protection, however, decreased with increase in LET from 51 to 135 keV/micron to the DMF value of 1.2 and no significant protection was observed against 56Fe ions at 260 keV/micron. Significant increases in extrapolation number occurred with gamma rays and neon particles. The results are discussed in terms of charged particle track structure, radiation chemistry, and potential clinical applications.  相似文献   

4.
Neoplastic cell transformation by heavy ions   总被引:1,自引:0,他引:1  
We have studied the induction of morphological transformation by heavy ions. Golden hamster embryo cells were irradiated with 95 MeV 14N ions (530 keV/microns), 22 MeV 4He ions (36 keV/microns), and 22 MeV 4He ions with a 100-microns Al absorber (77 keV/microns) which were generated by a cyclotron at the Institute of Physical and Chemical Research in Japan. Colonies were considered to contain neoplastically transformed cells when the cells were densely stacked and made a crisscross pattern. It was shown that the induction of transformation was much more effective with 14N and 4He ions than with gamma or X rays. The relative biological effectiveness (RBE) relative to 60Co gamma rays was 3.3 for 14N ions, 2.4 for 4He ions, and 3.3 for 4He ions with a 100-microns Al absorber. The relationship between RBE and linear energy transfer was qualitatively similar for both cell death and transformation.  相似文献   

5.
The relative biological effectiveness (RBE) for the induction of DNA strand breaks and the efficiency of repair of these breaks in cultured diploid bovine lens epithelial cells was measured, using accelerated heavy ions in the linear energy transfer (LET)-range up to 16,200 keV/micron. At LET values above 800 keV/micron, the number of DNA strand breaks induced per particle increases both with the atomic number of the projectile and with its kinetic energy. About 90 per cent or more of the strand breaks induced by ions with an LET of less than 10,000 keV/micron are repaired within 24 h. Repair kinetics show a dependence on the particle fluence (irradiation dose). At higher particle fluences a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At any LET value, repair is much slower after heavy-ion exposure than after X-irradiation. This is especially true for low energetic particles with a very high local density of energy deposition within the particle track. At the highest LET value (16,200 keV/micron), no significant repair is observed.  相似文献   

6.
重离子射线照射对家蚕的生物影响   总被引:1,自引:0,他引:1  
屠振力 《生态学报》2010,30(18):5098-5105
为解明重离子射线的生物影响,调查了氖、碳及氦(20Ne8+,LET=300keV/μm;12C5+,LET=116keV/μm和4He2+,LET=16.2keV/μm)等重离子射线照射家蚕(Bombyxmori)后的存活率及形态变化。重离子射线照射不同发育时期的幼虫后所引起的生物影响不同,幼虫的发育时期越早,照射后引起的生物影响越大;对同一时期的幼虫,随着剂量的增加,照射的生物影响加大;以化蛹率和羽化率为指标的放射线感受性在供试的3种射线间具有相似的变化倾向,只是射线的射程越长,照射的生物影响越大;对熟蚕卵巢存在部位的局部照射也显示相似的结果。同一射线的不同LET轨迹位置对家蚕的卵巢及真皮细胞的生物影响不同,用Mylar薄膜覆盖调节碳离子射线的射程,卵巢及真皮细胞越是接近射线高LET的Bragg峰,照射个体的鳞毛及卵的形成被强烈抑制。因此,重离子射线对家蚕的生物影响与细胞及植物种子等小个体不同,对于全体照射,重离子射线的射程长短所造成的生物影响比射线的LET大小所引起的生物影响要大;而对于局部照射,目的器官越是接近射线的高LET轨迹,照射的生物影响越大。  相似文献   

7.
Ionizing radiation-induced bystander effects, commonly observed in cell populations exposed to high-linear energy transfer (LET) radiations, are initiated by damage to a cellular molecule which then gives rise to a toxic signal exported to neighboring cells not directly hit by radiation. A major goal in studies of this phenomenon is the identification of this initial radiation-induced lesion. Liquid water being the main constituent of biological matter, reactive species produced by water radiolysis in the cellular environment are likely to be major contributors to the induction of this lesion. In this context, the radiation track structure is of crucial importance in specifying the precise location and identity of all the radiolytic species and their subsequent signaling or damaging effects. We report here Monte Carlo track structure simulations of the radiolysis of liquid water by four different impacting ions 1H+, 4He2+, 12C6+ and 20Ne10+, with the same LET ( approximately 70 keV/ microm). The initial radial distribution profiles of the various water decomposition products (eaq(-), *OH, H*, H2 and H2O2) for the different ions considered are presented and discussed briefly in the context of track structure theory. As an example, the formation and temporal evolution of simulated 24 MeV 4He2+ ion tracks (LET approximately 26 keV/microm) are reported for each radiolytic species from 1 ps to 10 micros. The calculations reveal that the ion track structure is completely lost by approximately 1 micros.  相似文献   

8.
The extent of hydroxyl radical mediated cell inactivation was measured for a variety of particle beams ranging from 8.5 Me V/u neon ions to 570 Me V/u argon ions. In general, the fraction of the total radiosensitivity caused by OH decreases from close to 60 per cent at low ionization density or low linear energy transfer (low LET) to close to 25 per cent at high LET for aerobically irradiated mammalian cells. The extent of OH induced cell lethality can be explained in terms of LET infinity only for low energy or low atomic number particles where fragmentations and complicated track structures do not contaminate the characteristic particle LET. For example, at a calculated LET infinity of 100 ke V/micron, the OH mediated fraction of the total radiation damage is about 25 per cent for low energy carbon but close to 40 per cent for high energy carbon ions. For low energy charged nuclei of approximately the same energy, as the 5.4-13.4 MeV/u He, Li, C and Ne ions in this report, there is a predictable diminution of the OH mediated effect with increasing LET infinity; however, the biological effect cannot be predicted accurately from calculated LET infinity values for high energy particle irradiation, nor indeed from a variety of low energy charged particles of quite different energies (incident velocities). This illustrates the unsuitability of using LET as a unifying parameter, except under specific circumstances. As more is learned about the energy deposition for energized charged particles in terms of track structure (core and penumbra), it may be possible to characterize the radiobiological data with a better physical parameter than LET infinity.  相似文献   

9.
Radiosensitivity of Chinese hamster cells increased by 1.71 times in the presence of arabinoside cytosine and hydroxyurea after gamma-irradiation, and no sensitization occurred after irradiation with carbon ions of 6.6 MeV/nuclon (LET, 227 keV/micron). Under a standard set of conditions, the RBE coefficient of carbon ions decreased from 3.09 to 1.78 in the presence of DNA synthesis inhibitors. The possible mechanism of this phenomenon is discussed.  相似文献   

10.
We have established a single cell irradiation system, which allows selected cells to be individually hit with defined number of heavy charged particles, using a collimated heavy-ion microbeam apparatus at JAERI-Takasaki. This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures. Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18.3 MeV/amu 12C, 13.0 MeV/amu 20Ne, and 11.5 MeV/amu 40Ar ions. Targeting and irradiation of the cells were performed automatically at the on-line microscope of the microbeam apparatus according to the positional data of the target cells obtained at the off-line microscope before irradiation. The actual number of particle tracks that pass through cell nuclei was detected with prompt etching of the bottom of the cell dish made of ion track detector TNF-1 (modified CR-39), with alkaline-ethanol solution at 37 degrees C for 15-30 minutes. Using this system, separately inoculated Chinese hamster ovary cells, confluent normal human fibroblasts, and single plant cells (tobacco protoplasts) have been irradiated. These are the first studies in which single-ion direct hit effect and the bystander effect have been investigated using a high-LET heavy particle microbeam.  相似文献   

11.
To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.  相似文献   

12.
The LET-RBE spectra for cell killing for cultured mammalian cells exposed to accelerated heavy ions were investigated to design a spread-out Bragg peak beam for cancer therapy at HIMAC, National Institute of Radiological Sciences, Chiba, prior to clinical trials. Cells that originated from a human salivary gland tumor (HSG cells) as well as V79 and T1 cells were exposed to (3)He-, (12)C- and (20)Ne-ion beams with an LET ranging from approximately 20-600 keV/micrometer under both aerobic and hypoxic conditions. Cell survival curves were fitted by equations from the linear-quadratic model and the target model to obtain survival parameters. RBE, OER, alpha and D(0) were analyzed as a function of LET. The RBE increased with LET, reaching a maximum at around 200 keV/micrometer, then decreased with a further increase in LET. Clear splits of the LET-RBE or -OER spectra were found among ion species and/or cell lines. At a given LET, the RBE value for (3)He ions was higher than that for the other ions. The position of the maximum RBE shifts to higher LET values for heavier ions. The OER value was 3 for X rays but started to decrease at an LET of around 50 keV/micrometer, passed below 2 at around 100 keV/micrometer, and then reached a minimum above 300 keV/micrometer, but the values remained greater than 1. The OER was significantly lower for (3)He ions than the others.  相似文献   

13.
A single cell irradiation system has been developed at JAERI-Takasaki to study radiobiological processes in single-ion-hit mammalian cells and bystander cells, in ways that cannot be achieved using conventional broad field exposures. Individual mammalian cultured cells are irradiated in the atmosphere on the cell dish, the bottom of which is made of ion-track-detector CR-39, with a single or defined numbers of 13.0 MeV/amu 20Ne and 11.5 MeV/amu 40Ar ions. Targeting and irradiation of the cells are performed automatically at the on-line microscope of the microbeam apparatus according to the positional data of the target cells obtained at the off-line microscope before irradiation. Using this system, Chinese hamster ovary (CHO-K1) cells were irradiated with counted number of 20Ne and 40Ar ions. Thereafter, the growth of the cells was observed individually and repeatedly during post-irradiation incubation. The cells hit by a single 40Ar ion on their nucleus showed strong growth inhibition. Meanwhile, the cells in the irradiated dish but not hit by the ion (bystander cells) showed limited cell growth. This might be a bystander effect caused by heavy ion hit cell co-existing in the same dish.  相似文献   

14.
The effect of accelerated argon ions on the retina   总被引:1,自引:0,他引:1  
It has been postulated that high energy heavy ions cause a unique form of damage in living tissue, which results from the high linear energy transfer of accelerated single particles. We have searched for these single-particle effects, so-called "microlesions," in composite electron micrographs of retinas of rats which had been irradiated with a dose of 1 Gy of 570 MeV/amu argon ions. The calculated rate of energy deposition of the radiation in the retina was about 100 keV/micron and the influence was four particles per 100 micron 2. Different areas of the irradiated retinas which combined would have been expected to be traversed by approximately 2400 particles were examined. We were unable to detect ultrastructural changes in the irradiated retinas distinct from those of controls. The spatial cellular densities of pigment epithelial and photoreceptor cells remained within the normal range when examined at 24 h and at 6 months after irradiation. These findings suggest that the retina is relatively resistant to heavy-ion irradiation and that under the experimental conditions the passage of high energy argon ions does not cause retinal microlesions that can be detected by ultrastructural analysis.  相似文献   

15.
We are carrying out studies aimed at reducing the mutagenic effects of high-LET 56Fe ions and 12C ions (56Fe ions, 143 keV/microm; 12C ions, 100 keV/microm) with certain drugs, including RibCys [2-(R,S)-D-ribo-(1',2',3',4'-tetrahydroxybutyl)-thiazolidine-4(R)-carboxylic acid]. RibCys, formed by condensation of L-cysteine with D-ribose, is designed so that the sulfhydryl amino acid L-cysteine is released intracellularly through nonenzymatic ring opening and hydrolysis leading to increased levels of glutathione (GSH). RibCys (4 or 10 mM), which was present during irradiation and for a few hours after, significantly decreased the yield of CD59- mutants induced by radiation in AL human-hamster hybrid cells. RibCys did not affect the clonogenic survival of irradiated cells, nor was it mutagenic itself. These results, together with the minimal side effects reported in mice and pigs, indicate that RibCys may be useful, perhaps even when used prophylactically, in reducing the mutation load created by high-LET radiation in astronauts or other exposed individuals.  相似文献   

16.
The study was made of carcinogenic efficiency of 4 GeV/nucleon helium ions (LET = 0.88 keV/um) in comparison with gamma-radiation 60Co (LET = 0.23 keV/um). Adult outbred female rats underwent a single whole-body irradiation with helium ions in doses 0.25-4.0 Gy at the Synchrophasotron of the Joint Institute for Nuclear Research and with gamma-rays at "PX-gamma-30" irradiator in doses ranged from 0.5 to 4.0 Gy. The yields, histology and occurrence time of hemoblastoses and tumours in mammary glands, in endocrine glands, in soft tissues and in other organs were determined. Histological study was made using conventional methods. The irradiation of experimental animals with accelerated helium ions and standard radiation was shown to result in an increase in the yield of growths of various localizations with decreasing occurrence time and expanding histological spectrum as compared with intact rats. However, helium ions possess a higher carcinogenic efficiency. The coefficients of relative biological effectiveness of helium ions calculated by the nonparametric method appeared to increase with decreasing the radiation dose.  相似文献   

17.
Monte Carlo track structure simulations were performed to investigate the effect of multiple ionization of water on the primary (or "escape") (at approximately 10(-6) s) yield of hydrogen peroxide (G(H2O2)) produced in the radiolysis of deaerated 0.4 M H2SO4 solutions by 12C6+ and 20Ne9+ ions at high linear energy transfer (LET) up to approximately 900 keV/microm. It was found that, upon incorporating the mechanisms of double, triple and quadruple ionizations of water in the calculations, a quantitative agreement between theory and experiment can be obtained. The curve for G(H2O2) as a function of LET reaches a well-defined maximum of approximately 1.4 molecules/100 eV at approximately 180-200 keV/microm, in very good accord with the available experimental data. Our results also show that, for the highest LET values considered in this study, the H2O2 escape yields obtained in 0.4 M sulfuric acid solutions are about 45% greater in magnitude than those found in neutral water. Contrary to a recent assumption suggesting that the limiting value of G(H2O2) at infinite LET should be approximately 1 molecule/100 eV, somewhat similar for neutral and acidic water, our simulations show a clear decrease in the primary H2O2 yields with increasing LET at high LET, indicating that the question of the limiting value of G(H2O2) at very high LET for both neutral and acidic liquid water is still open.  相似文献   

18.
本实验将卵巢切除后的24只成年雌性兔分为4组,分别为A:卵巢切除组、B:雌激素治疗组、C:He-Ne激光血管内照射组、D:雌激素加He—Ne激光血管内照射组,分别测定其血液粘度等6项血液流变学指标。研究比较雌激素与低强度He—Ne激光血管内照射对去卵巢雌兔血液流变学的影响,为两者对绝经后妇女心血管疾病防治的临床使用提供参考。结果表明:雌激素可改善部分血液流变学指标;激光血管内照射使6项血液流变学指标均明显改善;雌激素加激光血管内照射共同作用与单独用激光血管内照射的结果大致相同。提示临床He—Ne激光血管内照射可阶段性替代雌激素应用于改善血液流变性,以便减少雌激素的剂量,降低其副作用。  相似文献   

19.
Lipid peroxidation induced by heavy ion irradiation was investigated in 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) liposomes. Lipid peroxidation was induced using accelerated heavy ions that exhibit linear energy transfer (LET) values between 30 and 15 000 keV/μm and doses up to 100 kGy. With increasing LET, the formation of lipid peroxidation products such as conjugated dienes, lipid hydroperoxides, and thiobarbituric acid-reactive substances decreased. When comparing differential absorption spectra and membrane fluidity following irradiation with heavy ions and x-rays (3 Gy/min), respectively, it is obvious that there are significant differences between the influences of densely and sparsely ionizing radiation on liposomal membranes. Indications for lipid fragmentation could be detected after heavy ion irradiation. Received: 6 March 1997 / Accepted in revised form: 31 March 1998  相似文献   

20.
We describe a low level of chromatid-type aberrations which included the relatively rare isochromatid/chromatid triradial in peripheral blood lymphocytes that were irradiated, ostensibly in G0, with accelerated heavy (12)C ions. These were produced only at the energies of 69 MeV/n (34.6 keV/microm), almost absent at the energy of either 58.6 MeV/n (46.07 keV/ microm) or 19.3 MeV/n (97 keV/microm), nor were they found after low-LET X-rays. Mechanisms potentially responsible for their formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号