共查询到20条相似文献,搜索用时 0 毫秒
1.
Patman J Bhardwaj N Ramnauth J Annedi SC Renton P Maddaford SP Rakhit S Andrews JS 《Bioorganic & medicinal chemistry letters》2007,17(9):2540-2544
A series of substituted 2-aminobenzothiazole compounds have been synthesized and evaluated as nitric oxide synthase (NOS) inhibitors. Compound 14 shows activity in the nM range and is selective for the human neuronal NOS isoform. We have also evaluated the compounds against the rat NOS isoforms. For some of the compounds, there are significant differences in NOS inhibitory activities between the human and rat enzymes. For example, compound 10b has nM activity against the rat nNOS while low microM activity against the human nNOS. 相似文献
2.
Di Giacomo C Sorrenti V Salerno L Cardile V Guerrera F Siracusa MA Avitabile M Vanella A 《Experimental biology and medicine (Maywood, N.J.)》2003,228(5):486-490
Selective inhibitors of neuronal nitric oxide synthase (nNOS), which are devoid of any effect on the endothelial isoform (eNOS), may be required for the treatment of some neurological disorders. In our search for novel nNOS inhibitors, we recently described some 1-[(Aryloxy)ethyl]-1H-imidazoles as interesting molecules for their selectivity for nNOS against eNOS. This work reports a new series of 1-[(Aryloxy)alkyl]-1H-imidazoles in which a longer methylene chain is present between the imidazole and the phenol part of molecule. Some of these molecules were found to be more potent nNOS inhibitors than the parent ethylenic compounds, although this increase in potency resulted in a partial loss of selectivity. The most interesting compound was investigated to establish its mechanism of action and was found to interact with the tetrahydrobiopterin (BH(4)) binding site of nNOS, without interference with any other cofactors or substrate binding sites. 相似文献
3.
Renton P Speed J Maddaford S Annedi SC Ramnauth J Rakhit S Andrews J 《Bioorganic & medicinal chemistry letters》2011,21(18):5301-5304
A series of 1,5-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase. A variety of flexible and restricted basic amine side chain substitutions was explored at the 1-position of the indole ring, while keeping the amidine group fixed at the 5-position. Compounds having N-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)- (12, (R)-12, (S)-12 and 13) and N-(1-(1-methylazepan-4-yl)- side chains (14, 15, (-)-15 and (+)-15) showed increased inhibitory activity for the human nNOS isoform and selectivity over eNOS and iNOS isoforms. The most potent compound of the series for human nNOS (IC(50)=0.02 μM) (S)-12 showed very good selectivity over the eNOS (eNOS/nNOS=96-fold) and iNOS (iNOS/nNOS=850-fold) isoforms. 相似文献
4.
Maddaford S Renton P Speed J Annedi SC Ramnauth J Rakhit S Andrews J Mladenova G Majuta L Porreca F 《Bioorganic & medicinal chemistry letters》2011,21(18):5234-5238
A series of 1,6-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). By varying the basic amine side chain at the 1-position of the indole ring, several potent and selective inhibitors of human neuronal NOS were identified. In general compounds with bulkier side chains displayed increased selectivity for nNOS over eNOS and iNOS isoforms. One of the compounds, (R)-8 was shown to reduce tactile hyperesthesia (allodynia) after oral administration (30 mg/kg) in an in vivo rat model of dural inflammation relevant to migraine pain. 相似文献
5.
Mbadugha BN Seo J Ji H Martásek P Roman LJ Shea TM Li H Poulos TL Silverman RB 《Bioorganic & medicinal chemistry》2006,14(11):3681-3690
The X-ray structure of previously studied dipeptidomimetic inhibitors bound in the active site of neuronal nitric oxide synthase (nNOS) presented a possibility for optimizing the strength of enzyme-inhibitor interactions as well as for enhancing bioavailability. These desirable properties may be attainable by replacement of the terminal amino group of the parent compounds (1-6) with a hydroxyl group (11-13, and 18-20). The hypothesized effect would be twofold: first, a change from a positively charged amino group to a neutral hydroxyl group might afford more drug-like character and blood-brain barrier permeability to the inhibitors; second, as suggested by docking studies, the incorporated hydroxyl group might displace an active site water molecule with which the terminal amino group of the original compounds indirectly hydrogen bonds. In vitro activity assays of the hydroxyl-terminated analogs (11-13 and 18-20) showed greater than an order of magnitude increase in K(i) values (decreased potency) relative to the amino-terminated compounds. These experimental data support the importance to enzyme binding of a potential electrostatic interaction relative to a hydrogen bonding interaction. 相似文献
6.
Graham R. Lawton Hantamalala Ralay Ranaivo Laura K. Chico Haitao Ji Fengtian Xue Pavel Martásek Linda J. Roman D. Martin Watterson Richard B. Silverman 《Bioorganic & medicinal chemistry》2009,17(6):2371-2380
Overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) has been linked to several neurodegenerative diseases. We have recently designed potent and isoform selective inhibitors of nNOS, but the lead compound contains several basic functional groups. A large number of charges and hydrogen bond donors can impede the ability of molecules to cross the blood brain barrier and thereby limit the effectiveness of potential neurological therapeutics. Replacement of secondary amines in our lead compound with neutral ether and amide groups was made to increase bioavailability and to determine if the potency and selectivity of the inhibitor would be impacted. An ether analogue has been identified that retains a similar potency and selectivity to that of the lead compound, and shows increased ability to penetrate the blood brain barrier. 相似文献
7.
Maccallini C Patruno A Lannutti F Ammazzalorso A De Filippis B Fantacuzzi M Franceschelli S Giampietro L Masella S Felaco M Re N Amoroso R 《Bioorganic & medicinal chemistry letters》2010,20(22):6495-6499
A series of N-substituted acetamidines and 2-methylimidazole derivatives structurally related to W1400 were synthesized and evaluated as Nitric Oxide Synthase (NOS) inhibitors. Analogs with sterically hindering isopropyl and phenyl substituents on the benzylic carbon connecting the aromatic core of W1400 to the acetamidine nitrogen, showed good inhibitory potency for nNOS (IC(50)=0.2 and 0.3 μM) and selectivity over eNOS (500 and 1166) and to a lesser extent over iNOS (50 and 100). A molecular modeling study allowed to shed light on the effects of the structural modifications on the selectivity of the designed inhibitors toward the different NOS isoforms. 相似文献
8.
Huiying Li Fengtian Xue James M. Kraus Haitao Ji Kristin Jansen Labby Jan Mataka Silvia L. Delker Pavel Martásek Linda J. Roman Thomas L. Poulos Richard B. Silverman 《Bioorganic & medicinal chemistry》2013,21(5):1333-1343
Inhibitors of neuronal nitric oxide synthase have been proposed as therapeutics for the treatment of different types of neurological disorders. On the basis of a cis-3,4-pyrrolidine scaffold, a series of trans-cyclopropyl- and methyl-containing nNOS inhibitors have been synthesized. The insertion of a rigid electron-withdrawing cyclopropyl ring decreases the basicity of the adjacent amino group, which resulted in decreased inhibitory activity of these inhibitors compared to the parent compound. Nonetheless, three of them exhibited double-digit nanomolar inhibition with high nNOS selectivity on the basis of in vitro enzyme assays. Crystal structures of nNOS and eNOS with these inhibitors bound provide a basis for detailed structure–activity relationship (SAR) studies. The conclusions from these studies will be used as a guide in the future development of selective NOS inhibitors. 相似文献
9.
Selective inhibition of the localized excess production of NO by neuronal nitric oxide synthase (nNOS) has been targeted as a potential means of treating various neurological disorders. Based on observations from the X-ray crystal structures of complexes of nNOS with two nNOS-selective inhibitors, (4S)-N-{4-amino-5-[(2-amino)ethylamino]pentyl}-N'-nitroguanidine (L-Arg(NO2)-L-Dbu-NH2 (1) and 4-N-(Nomega-nitro-L-argininyl)-trans-4-amino-L-proline amide (2), a series of descarboxamide analogues was designed and synthesized (3-7). The most potent compound was aminopyrrolidine analogue 3, which exhibited better potency and selectivity for nNOS than parent compound 2. In addition, 3 provided higher lipophilicity and a lower molecular weight than 2, therefore having better physicochemical properties. Nalpha-Methylated analogues (8-11) also were prepared for increased lipophilicity of the inhibitors, but they had 4- to 5-fold weaker binding affinity compared to their parent compounds. 相似文献
10.
Nason DM Heck SD Bodenstein MS Lowe JA Nelson RB Liston DR Nolan CE Lanyon LF Ward KM Volkmann RA 《Bioorganic & medicinal chemistry letters》2004,14(17):4511-4514
The synthesis and nNOS and eNOS activity of 6-(4-(dimethylaminoalkyl)-/6-(4-(dimethylaminoalkoxy)-5-ethyl-2-methoxyphenyl)-pyridin-2-ylamines and 6-(4-(dimethylaminoalkyl)-/6-(4-(dimethylaminoalkoxy)-2,5-dimethoxyphenyl)-pyridin-2-ylamines 1-8 are described. These compounds are potent inhibitors of the human nNOS isoform. 相似文献
11.
Annedi SC Maddaford SP Ramnauth J Renton P Speed J Rakhit S Andrews JS Porreca F 《Bioorganic & medicinal chemistry letters》2012,22(5):1980-1984
A series of 3,5-disubstituted indole derivatives was designed, synthesized and evaluated as inhibitors of human nitric oxide synthase (NOS). Various guanidine isosteric groups were explored at the 5-position of the indole ring, while keeping the basic amine side chain such as N-methylpiperidine ring, fixed at the 3-position of the indole ring. Compounds having 2-thiophene amidine and 2-furanyl amidine groups (7, 8, 10 and 12) showed increased activity for human neuronal NOS and good selectivity over endothelial and inducible NOS isoforms. Compound 8 was shown to reverse (10mg/kg, ip) thermal hyperalgesia in the L(5)/L(6) spinal nerve ligation (neuropathic pain) model and was devoid of any significant drug-drug interaction potential due to cytochrome P450 inhibition or cardiovascular liabilities associated with the inhibition of endothelial NOS. 相似文献
12.
Jianguo Fang 《Analytical biochemistry》2009,390(1):74-2048
Nitric oxide synthase (NOS) inhibitors are potential drug candidates because it has been well demonstrated that excessive production of nitric oxide critically contributes to a range of diseases. Most inhibitors have been screened in vitro using recombinant enzymes, leading to the discovery of a variety of potent compounds. To make inhibition studies more physiologically relevant and bridge the gap between the in vitro assay and in vivo studies, we report here a cellular model for screening NOS inhibitors. Stable transformants were generated by overexpressing rat neuronal NOS in HEK 293T cells. The enzyme was activated by introducing calcium ions into cells, and its activity was assayed by determining the amount of nitrite that was formed in culture medium using the Griess reagent. We tested a few NOS inhibitors with this assay and found that the method is sensitive, versatile, and easy to use. The cell-based assay provides more information than in vitro assays regarding the bioavailability of NOS inhibitors, and it is suitable for high-throughput screening. 相似文献
13.
Qing Jing Huiying Li Jianguo Fang Linda J. Roman Pavel Martásek Thomas L. Poulos Richard B. Silverman 《Bioorganic & medicinal chemistry》2013,21(17):5323-5331
In certain neurodegenerative diseases damaging levels of nitric oxide (NO) are produced by neuronal nitric oxide synthase (nNOS). It, therefore, is important to develop inhibitors selective for nNOS that do not interfere with other NOS isoforms, especially endothelial NOS (eNOS), which is critical for proper functioning of the cardiovascular system. While we have been successful in developing potent and isoform-selective inhibitors, such as lead compounds 1 and 2, the ease of synthesis and bioavailability have been problematic. Here we describe a new series of compounds including crystal structures of NOS-inhibitor complexes that integrate the advantages of easy synthesis and good biological properties compared to the lead compounds. These results provide the basis for additional structure–activity relationship (SAR) studies to guide further improvement of isozyme selective inhibitors. 相似文献
14.
Boulouard M Schumann-Bard P Butt-Gueulle S Lohou E Stiebing S Collot V Rault S 《Bioorganic & medicinal chemistry letters》2007,17(11):3177-3180
A series of halo-1-H-indazoles has been synthesized and evaluated for its inhibitory activity on neuronal nitric oxide synthase. Introduction of bromine at the C4 position of the indazole ring system provided a compound almost as potent as the reference compound, that is, 7-nitroindazole (7-NI). The importance of position 4 is further demonstrated by the synthesis and pharmacological evaluation of the 4-nitroindazole which was also a potent inhibitor of NOS activity. These compounds also exhibited in vivo NOS inhibitory activity, as attested by potent antinociceptive effects following systemic administration. 相似文献
15.
Qing Jing Huiying Li Georges Chreifi Linda J. Roman Pavel Martásek Thomas L. Poulos Richard B. Silverman 《Bioorganic & medicinal chemistry letters》2013,23(20):5674-5679
To develop potent and selective nNOS inhibitors, new double-headed molecules with chiral linkers that derive from natural amino acids or their derivatives have been designed. The new structures contain two ether bonds, which greatly simplifies the synthesis and accelerates structure optimization. Inhibitor (R)-6b exhibits a potency of 32 nM against nNOS and is 475 and 244 more selective for nNOS over eNOS and iNOS, respectively. Crystal structures show that the additional binding between the aminomethyl moiety of 6b and the two heme propionates in nNOS, but not eNOS, is the structural basis for its high selectivity. This work demonstrates the importance of stereochemistry in this class of molecules, which significantly influences the potency and selectivity of the inhibitors. The structure–activity information gathered here provides a guide for future structure optimization. 相似文献
16.
N(G)-Amino-l-arginine, N(5)-(1-iminoethyl)-l-ornithine, N(6)-(1-iminoethyl)-l-lysine, and aminoguanidine were studied for the mechanisms by which they produce suicidal inactivation of the neuronal nitric oxide synthase isoform (nNOS). All of the inactivators that were amino acid structural analogs targeted the heme residue at the nNOS active site and led to its destruction as evidenced by the time- and concentration-dependent loss of the nNOS heme fluorescence, which reflects the disruption of the protoporphyrin-conjugated structure. The loss of heme was exclusively associated with the dimeric population of the nNOS. This inactivator-mediated loss of the nNOS heme never reached more than 60%, suggesting that only half of the dimeric heme is involved in catalytic activation of mechanism-based inactivators studied. Aminoguanidine-induced nNOS inactivation produced covalent modification of the nNOS protein chain with a stoichiometry of 0.8 mol of aminoguanidine per mole of the nNOS monomer. Specific covalent modification by aminoguanidine was exclusively associated with the oxygenase domain of the nNOS. The mechanisms by which N(6)-(1-iminoethyl)-l-lysine and aminoguanidine inactivate the nNOS and iNOS do not differ between the isoforms. The selectivity of these inactivators toward the iNOS isoform is a reflection of their much lower partition ratios, which were determined to be 0.16 +/- 0. 1 for N(6)-(1-iminoethyl)-l-lysine and 12 +/- 1.5 for aminoguanidine in case of the iNOS isoform while the same inactivators produced the partition ratios of 17 +/- 2 and 206 +/- 4, respectively, for the nNOS isoform. 相似文献
17.
Richard B. Silverman Graham R. Lawton Hantamalala Ralay Ranaivo Laura K. Chico Jiwon Seo D. Martin Watterson 《Bioorganic & medicinal chemistry》2009,17(21):7593-7605
Several prodrug approaches were taken to mask amino groups in two potent and selective neuronal nitric oxide synthase (nNOS) inhibitors containing either a primary or secondary amino group to lower the charge and improve blood–brain barrier (BBB) penetration. The primary amine was masked as an azide and the secondary amine as an amide or carbamate. The azide was not reduced to the amine under a variety of in vitro and ex vivo conditions. Despite the decrease in charge of the amino group as an amide and as carbamates, BBB penetration did not increase. It appears that the uses of azides as prodrugs for primary amines or amides and carbamates as prodrugs for secondary amines are not universally effective for CNS applications. 相似文献
18.
Two established antithyroid drugs, 6-propyl-2-thiouracil and 6-methyl-2-thiouracil, as well as S-methylthiouracil, are shown to be competitive inhibitors of nitric oxide synthase (NOS) (K(I) values ranging from 14 to 60 microM), with moderate selectivity for the neuronal isoform. Other thioureylene and thioamide-containing heterocyclic systems proved virtually ineffective as NOS inhibitors. Besides offering novel useful leads for inhibitor design as well as to probe the active site of neuronal NOS, the results of this study may have interesting implications in relation to the antithyroid activity of thiouracils and their possible neurological effects. 相似文献
19.
20.
Gahman TC Herbert MR Lang H Thayer A Symons KT Nguyen PM Massari ME Dozier S Zhang Y Sablad M Rao TS Noble SA Shiau AK Hassig CA 《Bioorganic & medicinal chemistry letters》2011,21(22):6888-6894
We have identified and synthesized a series of imidazole containing dimerization inhibitors of inducible nitric oxide synthase (iNOS). The necessity of key imidazole and piperonyl functionality was demonstrated and SAR studies led to the identification of compound 35, which showed a dose dependant inhibition in multiple pain models, including tactile allodynia induced by spinal nerve ligation (Chung model). 相似文献