共查询到20条相似文献,搜索用时 0 毫秒
1.
The validity of compartmental analysis of Rb+ efflux from roots of intact high-salt barley plants ( Hordeum vulgare L. cv. Salve) was examined. 86 Rb+ was used as a tracer. Rb+ (1 m M ) was included together with 3 m M K+ in the growth medium, and steady-state conditions were assumed to prevail during the experiment. Three phases of efflux were revealed with half-times of 23 min, 109 min and 12 h, respectively; and the time span of the experiment had to be at least 20 h to make determination of the slow phase possible. We cannot state what compartments in the root the 3 different slopes represent. A comparison of slopes was made between the plots of In efflux vs time and In content vs time. In spite of correction for tracer transport from the roots to the shoot, the slopes for the slow phase did not agree unless up to 85% of the root content of Rb+ is assumed not to participate in efflux. 相似文献
2.
Sune Pettersson 《Physiologia plantarum》1986,66(1):122-128
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+ (86 Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small. 相似文献
3.
4.
Abstract. Rates of proton extrusion and potassium (86 Rb) influx by intact roots of barley ( Hordeum vulgare cvs . Fergus, Conquest and Betzes) plants were simultaneously measured in short-term (15min) experiments. The nature and extent of apparent coupling between these ion fluxes was explored by manipulating conditions of temperature, pH and cation composition and concentration during flux determinations. In addition, the influence of salt status upon these fluxes was examined. At low K+ concentrations (0.01 to 1 mol m−3 ), H+ efflux and K+ influx were strongly correlated in both low- and high-K+ roots, although K+ : H+ exchange stoichiometries were almost consistently greater than 2:1. At higher concentrations (1 to 5 mol m−3 ), H+ efflux was either reduced or remained unchanged while K+ influxes increased. In the presence of Na2 SO4 , rates of H+ extrusion demonstrated similar cation dependence, although below 10 mol m−3 Na2 SO4 , H+ fluxes were generally 50% lower than in equivalent concentrations of K2 SO4 . These observations are considered in the context of current hypotheses regarding the mechanisms of k+ /H+ exchange. 相似文献
5.
6.
7.
Ice crystal formation temperature was determined in the region of the crown in one group of 7-day-old intact unhardened high-salt plants of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) with TA (Thermal Analysis) and DTA (Differential Thermal Analysis) methods. After exposure of another group of plants, grown for the first 7 days in the same way as the first group, to various sub-zero temperatures (-1 to 5°C), influx in roots of Rb+(86Rb+) and Ca2+(45Ca2+) and contents of K+ and Ca2+ were determined at intervals during 7 days of recovery. Ice crystal formation in the crown tissue was probably extracellular and took place at about -4°C. There was a large loss of K+ from the roots after treatment at sub-zero temperatures. This loss increased as the temperature of the sub-zero treatment decreased. During recovery, roots of plants exposed to -1, -2 and -3°C gradually reabsorbed K+. Reabsorption of K+ in roots of plants exposed to -4°C was greatly impaired. Rb+ influx decreased and Ca2+ influx increased after sub-zero temperature treatments of the plants. Active Rb+ influx mechanisms and active extrusion of Ca2+ were impaired or irreversibly damaged by the exposure. While Rb+ influx mechanisms were apparently repaired during recovery in plants exposed to temperatures down to -3°C, Ca2+ extrusion mechanisms were not. The temperature for ice crystal formation in the region of the crown tissue coincides with the temperature at which the plants lost the ability to reabsorb K+ and to repair Rb+ influx mechanisms during the recovery period. Plants were lethally damaged at temperatures below ?4°C. 相似文献
8.
Sylvia Lindberg 《Physiologia plantarum》1990,79(2):275-282
Three cultivars of sugar beet (Beta vulgaris L.), which are sensitive to aluminium (Al) in the order Primahill > Monohill > Regina, were grown in water culture for 2 weeks. Nutrients were supplied at 15% increase of amounts daily, corresponding to the nutrient demand for maximal growth. The 2.4-dinitrophenol (DNP)-sensitive (metabolic) and DNP-insensitive (non-metabolic) uptake of aluminium, phosphate. 45Ca2+ and K+(86Rb+) in roots were measured as well as transport to shoots of intact plants. All 3 cultivars absorbed more aluminium if DNP was present during the aluminium treatment than in its absence. It is suggested that sugar beets are able to extrude aluminium activity or that they possess an active mechanism to keep Al outside the cell. The presence of Al in the medium during the 1-h experiment affected the metabolic and non-metabolic fluxes of 45Ca2+ and K+(86Rb+) in different ways. In the presence of DNP, the influx of both 45Ca2+ and K+(86Rb+) and the efflux of 45Ca2+ were inhibited by Al in a competitive way. At inhibition of 45Ca2+ influx, 2 Al ions are probably bound per Ca2+ uptake site in cv. Regina (Al-tolerant), but in cvs Primahill and Monohill only one Al ion is bound (more Al sensitive). Aluminium competitively inhibited the active efflux of 45Ca2+ (absence of DNP) in almost the same way in the 3 cultivars. In contrast, aluminium stimulated the influx of K+(86Rb+) in cvs Primahill, Monohill and Regina in the absence of DNP. Thus, the Al effects on active and passive K+(86Rb+) influx are different. The total influx of K+(86Rb+) increased in the presence of Al and might be connected to an active exclusion of Al. Regina is the least Al-sensitive cultivar, probably because Al interferes less with the Ca2+ fluxes and because this cultivar actively excludes phosphate in the presence of Al. Thus Al-phosphate precipitation within the plant could be avoided. 相似文献
9.
Paul Jensén 《Physiologia plantarum》1981,52(4):437-441
Uptake of Rb+ from a complete nutrient solution with 2.0 mM Rb+ was studied in roots of spring wheat seedlings ( Triticum aestivum L. cv. Svenno) with different K+ levels. The relationship between Rb+ uptake and concentration of K+ in the roots indicated a negative feedback mechanism operating through allosteric control. The Rb+ uptake process in root cells was divided into two steps: (1) binding of the ion in the free space, and (ii) transmembrane transport into the cytoplasm. Metabolic and non-metabolic components of uptake were separated by addition of the metabolic inhibitor 2,4-dinitrophenol (DNP) to the nutrient solution. It is suggested that metabolic Rb+ uptake requires energy in two uptake steps (for binding to the carrier entity in the free space and for transmembrane transport) or in one step only (for transmembrane transport), dependent on the K+ status of the roots. The change from metabolic to non-metabolic binding in the free space is accomplished by changing the conformational state of the carrier (slow/fast transitions). There may be a hysteretic effect on metabolic Rb+ uptake through a slow transition between carrier states. This is superimposed on the negative cooperativity, strengthening further cooperativity at intermediate K+ levels in the roots. Non-metabolic Rb+ uptake probably consists of two components, a carrier-mediated (facilitated diffusion) and a parallel diffusive component. 相似文献
10.
11.
PAUL JENSÉN 《Physiologia plantarum》1980,49(3):291-295
The influx of Rb+ into the roots of two barley varieties (Hordeum vulgare L. cv. Salve and cv. Ingrid) from a K+-free 86Rb-labelled nutrient solution with 2.0 mM Rb+, was checked at intervals from day 6 to day 18. The control plants were continuously grown in complete nutrient solution containing 5.0 mM K+, while two other groups of plants were grown in K+-free nutrient solution starting on day 6 and between day 6 and day 9, respectively. The pattern of Rb+ influx was similar for both varieties, although their efficiencies in absorbing Rb+ were different. The relationship between Rb+ influx and K+ concentration of the root could be interpreted in terms of negative feedback through allosteric control of uptake across the plasmalemma of the root cells. Hill plots were bimodal, but in the opposite direction. The Hill coefficients, reflecting the minimum number of interacting allosteric binding sites for K+ (Rb+), were low (≤–3.0). It is discussed whether the threshold value, that is the breaking point in the Hill plot, is indicative of a changed efficiency of transporting units for K+ (Rb+) transport to the xylem. Moreover, feedback regulation might be involved in transport of K+ between root and shoot. The variation in K+ concentrations in the roots and shoots of control plants were cyclic but in phase opposition despite an exponential growth. The average K+ concentration varied only slightly with age. 相似文献
12.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3 ) on K+ (Rb+ ) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+ , the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels. 相似文献
13.
The regulatory role of abscisic acid (ABA) and kinetin on influx of K+(86RB+) IN tools of 7day old intact winter wheat which plant (Fritieun aestivum I ass starke 1 and 11) Was studied the inhibitory effect of 40,80 μM ABA in the uptake solution on K+(86RB+)influx was transiently stipulated pretreatment of the plants with ABA kinetin content enacted inhibitors effect caused by ABA. At low water potential in the uptake solution (05MPa)K+(86RB+) influx was slights higher in the presence of ABA than in is absence High humidity 123kpa ca 100% relative humidity (RID)around the shoots counteracted the inhibitory effect on k+(86RB+) influx caused by A,B,A IN the uptake solution the present data contain the hypothesis that when plants are subjected to conditions such as low water potential and low temperature. ABA stimulates K influx to facilitate water uptake. 相似文献
14.
15.
Spring wheat (Triticum aestivum L. cv. Svenno), oat (Avena sativa L. cv. Brighton) and glasshouse cucumber (Cucumis sativus L. cv. Bestseller F1) were cultured for a week after germination on complete nutrient solutions of three different dilutions (1, 25 and 50% of the full strength medium). K+(86Rb) and 45Ca were present during the whole culture period. Relative humidity (RH) was 50% except during the last day, when half the material was transferred to 90% RH. Efflux of labelled ions was then followed during eight hours on unlabelled solutions of the same composition as before, and at both 50% and 90% RH in the atmosphere. – Uptake of K+(86Rb) during growth tended to be saturated in the 25% medium. Contrariwise, the level of Ca2+ in the roots increased continuously with strength of the medium. At low concentrations cucumber roots were higher in Ca2+ than roots of oat or wheat, whereas all three species showed similar levels of Ca2+ in 50% medium. – At the lowest ionic strength, smooth efflux curves were obtained that could be resolved according to the three-compartment theory. At higher ionic strength, irregularities were observed, and more for Ca2+ than for K+; but for practical purposes compartment analysis with the same time constants could be applied as for the lowest concentration. – Discrimination between K+ and Rb+ differed between the roots, but not much between the shoots of different species. The roots of oat and wheat took up Rb+ preferentially over K+ in the 25% and 50% media; whereas K+ was preferred over Rb+ or little discrimination made in 1% medium and for cucumber. The shoots generally showed less discrimination than the roots. The main variability in discrimination between K+ and Rb+ thus appears to be localized in the tonoplasts of the roots cells. – Low RH around the shoots increased efflux of K+(86Rb) from the cytoplasm and vacuoles of the root cells as compared to the efflux at high RH. DNP (2,4-dinitrophenol) in the medium had the same effect as high RH around the shoots. The signal system that must exist between shoots and roots is discussed as a response to “drought” conditions. In relation to investigations of others, it is assumed that the effect of DNP may indicate that part of the chain between roots and shoots consists of metabolically influenced sites, whose output is influenced by the rate of water transport. 相似文献
16.
Manuel Diaz de la Guardia José M. Fournier Manuel Benlloch 《Physiologia plantarum》1985,63(2):176-180
Young sunflower plants ( Helianthus annuus L. cv. Halcón), grown in nutrient solution at two K+ levels (0.25 and 2.5 m M ) were used to study the effect of K+ content in the root on uptake and transport of K+ to the exuding stream of decapitated plants. Roots of plants grown in low K+ gave higher exudation flux, higher K+ concentration in exudate and higher K+ flux than high K+ roots. After 6 h of uptake the K+ flux in low K+ roots was about three times that in high K+ roots. When the roots were kept in a nutrient solution in which Rb+ replaced K+ , low K+ roots exuded much more Rb+ than K+ after the first 2 h, whereas high K+ roots exuded about similar amounts of K+ and Rb+ . In intact plants grown at three different K+ levels (0.1, 1.0 and 10.0 m M ), there was an inverse relationship between the K+ level in the nutrient solution and the Rb+ accumulated in the roots or transported to the shoot. The results suggest that the transport of ions from xylem parenchyma to stele apoplast may be controlled by ions coming down from the shoot in sieve tubes. 相似文献
17.
Influx of Rb+(86Rb+) and Ca2+(45Ca2+) was determined in roots of winter wheat (Triticum aestivum L. cv. Weibulls Starke II) after 14 days at 16°C/16 h light, after 1 and 8 weeks of cold acclimation (2°C/8 h light) and at intervals after deacclimation (16°C/16 h light) for up to 14 days. The plants were cultivated at 3 ionic strengths: 100, 10 and 1% of a full strength nutrient solution, containing 3.0 mM K+ and 1.0 mM Ca2+. K+ concentrations in roots and shoots increased during cold treatment, while Ca2+ in the roots decreased. In the shoots Ca2+ concentrations remained the same. Influx of Rb+ as a function of average K+ concentration in the roots of 14-day-old, non-cold-treated plants was high at a certain K+ level in the root and decreased at higher root K+ levels (negative feedback). The pattern for Ca2+ influx versus average concentration of Ca2+ in the root was the reverse. Independent of duration of treatment (1–8 weeks), cold acclimation partly changed the regulation of Rb+ influx, so that it became less dependent upon negative feedback and more dependent on the ionic strength of the cultivation solution. After exposure to 2°C, Ca2+ influx increased at high Ca2+ concentrations in the root as compared with influx in roots of 14-day-old non-cold-treated plants. Under deacclimation, Ca2+ influx gradually decreased again, and reached the level observed before cold treatment within 7–14 days at 16°C; the number of days depending on the exposure time at 2°C. It is suggested that Rb+(K+) influx became adjusted to low temperature and that abscisic acid (ABA) may be involved in this mechanism. It is also suggested that extrusion of Ca2+ was impaired and/or Ca2+ channels were activated at 2°C in roots of plants grown in the full-strength solution and that extrusion was gradually restored and/or Ca2+ channels were closed under deacclimation conditions. 相似文献
18.
Epi- and intracuticular lipids and cuticular transpiration rates of primary leaves of eight barley (Hordeum vulgare) cultivars 总被引:1,自引:0,他引:1
Magnus Svenningsson 《Physiologia plantarum》1988,73(4):512-517
The major constituents of the epi- and intracuticular lipids of primary leaves of 8 cultivars of barley ( Hordeum vulgare L.) have been studied together with cuticular transpiration rates. The total amount of analysed cuticular lipids ranged from 9.6 to 13.4 μg cm−2 and was dominated by the epicuticular fraction, which made up 73–84% of the total. There were variations in the percentages of the analysed lipid classes, alkanes, esters, aldehydes, β-diketones and alcohols, between epi- and intracuticular lipids among individual cultivars, but no clear tendency in these variations, except for the aldehydes, was found. The epicuticular lipids were richer in aldehydes than the intracuticular lipids. The cuticular transpiration rates were poorly correlated with the levels or composition of epi-, intra- or total cuticular lipids. The cuticular transpiration rates were considerably altered as a response to a water stress treatment, but these changes could not be correlated with any changes in amount or composition of the cuticular lipids. From these results it is concluded that some property other than amount or composition of cuticular lipids is the most important in regulation of water diffusion through the cuticle. 相似文献
19.
The effects of cadmium and lead on the internal concentrations of Ca2+ and K+, as well as on the uptake and translocation of K(86Rb+) were studied in winter wheat (Triticum aestivum L. a. MV-8) grown hydroponically at 2 levels of K+ (100 uM and 10 mM). Cd2+ and Pb2+ were applied in the nutrient solution in the range of 0.3 to 1000 u.M. Growth was more severely inhibited by Cd2+ and in the high-K+ plants as compared to Pbz+ and low-K+ plants. Ions of both heavy metals accumulated in the roots and shoots, but the K+ status influenced their levels. Ca2+ accumulation was increased by low concentrations of Cd2+ mainly in low-K+ shoots, whereas it was less influenced by Pb2+. The distribution of Cd2+ and Ca2+ in the plant and in the growth media indicated high selectivity for Cd2+ in the root uptake, while Ca2+ was preferred in the radial and/or xylem transport. Cd2+ strongly inhibited net K+ accumulation in high-K+ plants but caused stimulation at low K+ supply. In contrast, the metabolis-dependent influx of K+(86Rb+) was inhibited in low-K+ plants, while the passive influx in high-K+ plants was stimulated. Translocation of K+ from the roots to the shoots was inhibited by Cd2+ but less influenced in Pb2+-treated plants. It is concluded that the effects of heavy metals depend upon the K+-status of the plants. 相似文献
20.
Schjørring, J. K. and Jensén, P. 1984. Phosphorus nutrition of barley, buckwheat and rape seedlings. I. Influence of seed-borne P and external P levels on growth, P content and 32P/31P-fractionation in shoots and roots. Seedlings of barly (Hordeum vulgare L. cvs Salka and Zita), buckwheat (Fagopyrum esculentum Moench) and rape (Brassica napus L. ssp. napus ev. Line) were grown at 8 or 10 different external P levels in the range 0-2000 μM. Apart from P, the nutrient solutions were complete. In some experiments with barley and rape, 32P-labelled phosphate was used. Root fresh weights of buckwheat and rape decreased when the external P supply exceeded the level required for maximal root development. In all three species, the roots constituted a decreasing proportion of the total plant fresh weight as the external P level increased. The shoot/root fresh weight ratio increased linearly with the P concentration of the roots. The ratio between the P concentration in shoots and roots increased with the P status of the seedlings grown at low to intermediate external P levels, but decreased at higher P levels. The proportion of total seedling-P held in roots consequently reached a minimum value and thereafter increased as the P status of the seedlings increased. This indicates that some control mechanism counteracted the accumulation of harmful P levels in the shoots. 32P-Phosphate uptake by seedlings of barley and rape grown in solutions with 2 μM P overestimated the actual net phosphorus uptake by a factor of 6 to 7, indicating a marked fractionation of 32P and 31P. For seedlings grown in solutions with 25 μM P (barley) or 50 μM (rape) no fractionation occurred. The relative excess of 32P in high P seedlings accumulated in the roots. It is suggested that the fracionation was caused by efflux of low specific activity phosphorus and by diffusion of free phosphate ions across the plasmalemma of the root cells in response to a difference in the concentration gradient between the two P isotopes. 相似文献