首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of a recently presented method (Stepwise Thermogravimetry, STG) to characterize biogenic organic matter (Kristensen 1990) was tested in comparative decomposition experiments. The initial microbial decay of pre-dried, fresh detritus from 6 different plant materials (2 macroalgae, 2 seagrasses, and 2 tree leaves) was examined for 70 days in aerobic seawater slurries. In addition, slurries of sediment detritus of low reactivity, representing the late stage of plant decay, were allowed to decompose aerobically and anaerobically for 200 days. Macroalgae lost 40–44% carbon over 70 days, whereas seagrasses lost 29–33% and tree leaves lost 0–8%. After a 3–5 days leaching phase, the temporal pattern of POC and PON loss from the plant detritus was exponential with higher rates for the former resulting in a 5–28% reduced C:N ratio. The Rp index decreased (<20%) during the initial leaching phase followed by a 30–40% increase to the end. Initial Rp was directly proportional to decay rate. POC loss in the anaerobic sediment slurry was 10% over the 200 day period (the aerobic was hampered by low pH). Preferential loss of PON caused a 30% increase in C:N ratio. The Rp index of sediment detritus also increased with 30%. Although the present laboratory experiments not fully simulate the natural environment, the Rp-C:N relationship obtained from the two slurry experiments can illustrate the general pattern of plant decay from fresh to refractory (humic) detritus. During initial aerobic decay, rapid leaching and microbial growth causes a decrease in both Rp and C:N (Rapid growth, phase 1). When all labile substrates have been consumed and the slower decay is controlled by enzymatic attack on particles with an associated production of humic compounds and accumulation of nitrogen rich bacterial cell remains, Rp increases and C:N decreases (Slow growth, phase 2). Later, when condensed humic compounds have accumulated, decay ceases. Most carbon is now bound in forms which are of low availability to bacteria and a preferential mineralization of nitrogen occurs; both Rp and C:N increases (Condenzation, phase 3).  相似文献   

2.
The surficial sediments recovered from 12 sites located near the channel axis of the Florida Straits and the lower slope off NW Cuba were analyzed for total organic carbon (TOC), nitrogen (TN), phosphorus (TP), elemental C:N:P ratios, C and N isotopic values, and 14C dating. The depth profiles of TOC, TN, and TP (0-18 cm) displayed a downcore trend and a significant variation. The TOC values were low (0.15 to 0.62%; 66 to 516 µmol g-1). Sites near the island’s lower slope had lower TOC average concentrations (158-333 µmol g-1) than those closer to the channel axis (averaging 341-516 µmol g-1; p <0.05). The TN concentrations near the lower slope attained 0.11% (80 µmol g-1), whereas, towards the channel axis, they decreased to 0.07% (55 µmol g-1; p<0.05). The C:N ratios ranged from 1.9 to 10.2. The mean molar C:N ratio (5.4) indicated a marine hemipelagic deposition. The TP was lower at sites near the lower slope (38.4 to 50.0 µmol g-1; 0.12% to 0.16%) than those near the channel axis (50.0 to 66 µmol g-1; 0.15 to 0.21%). C:P fluctuated from 7.7 to 14.1 in the surficial sediment layer. The bulk organic δ13Corg and δ15N values confirmed pelagic organic sources, and the 14C dating revealed that the sediments were deposited during the Holocene (1000-5000 yr BP). We suggest that the hydrodynamic conditions in the Straits influence vertical and advective fluxes of particulate organic material trapped in the mixed-layer, which reduces the particulate matter flux to the seabed.  相似文献   

3.
To evaluate the effect of monensin on the performance of growing cattle under different environmental temperatures, 24 male calves (81.9 ± 7.7 kg mean weight and 100 days old) were distributed in a 2 × 2 factorial arrangement, contrasting 0 or 85 mg monensin/animal per day at 24.3 or 33.2 °C (environmental temperatures). Monensin supplementation increased weight gain (P=0.036), improved feed efficiency (P=0.040), increased ruminal concentrations of volatile fatty acids (VFA; P=0.003) and decreased the molar proportion of butyrate (P=0.034); all effects irrespective of environmental temperatures. A temperature-dependent monensin effect was detected on nitrogen retention (P=0.018) and N retained:N absorbed ratio (P=0.012). Animals fed monensin retained higher N amounts than those of the non-supplemented ones when the environmental temperature was 33.2 °C. Environmental temperature and monensin supplementation showed an interaction effect on urine N concentration (P=0.003). Temperature did not affect N excretion in monensin-fed animals, but increased N excretion in the non-supplemented ones. Monensin increased the crude protein (CP) digestibility (P=0.094) for animals at both temperatures. In conclusion, monensin changes the metabolism of the heat-stressed animals by increasing rumen VFA concentration, digestibility and protein retention, thus improving food use and weight gain.  相似文献   

4.
The response of pot grown lettuce to inorganic (ammonium nitrate) and organic (dried blood and Protox) N fertilizers was determined at two temperature regimes (15°C day/10°C night and 20°C day/15°C night) and related to the NH4–N and NO3–N release characteristics of each material. The N release characteristics of the organic materials matched the N requirements of lettuce more closely than the inorganic fertilizer. However, was rapidly released from the protein based materials such that composts were depleted of available fertilizer N at the same time irrespective of the form supplied. The warmer temperature regimes resulted in a more rapid depletion of the fertilizers due to biological immobilization such that N recoveries in shoots, roots and leachates were reduced. Approximately 20% of the N present in Protox (a material derived from activated sewage sludge, processed to reduce the heavy metal content to minimal levels) appeared to be resistant to microbial degradation and was unavailable to the plants. Therefore, the growth response of lettuce was slightly reduced with Protox compared to the other materials at similar rates of incorporation. The organic materials did not contribute NO3–N to the plant and small NO3–N concentrations in petioles were derived from the water used for irrigation. However, NO3–N levels in plants receiving inorganic ammonium nitrate were initially high but progressively declined as the fertilizer NO3–N became depleted.  相似文献   

5.
Optimising the use efficiency of nitrogen (N) derived from different quality organic resources and mineral fertilizers on sandy soils with <100 g clay kg−1 is a major challenge for smallholder farmers in Southern Africa. The dominant sandy soils have a poor capacity to store and supply crop nutrients due to low organic matter contents and inherent infertility. A study was conducted in Zimbabwe to determine the differential N supply effects of different quality and quantities of organic nutrient sources on maize productivity. Crotalaria juncea L., Calliandra calothyrsus Meissn., cattle manure, maize (Zea mays L.) stover and Pinus patula Schiede & Schltdl. & Cham. sawdust which represented high to low quality materials respectively, were each incorporated into soil at 1.2 and 4 t C ha−1 at Makoholi Experiment Station (rainfall: 450–650 mm yr−1) and tested against a sole mineral N fertilizer and control treatments. In a separate experiment conducted in farmers’ fields under different rainfall zones of Zimuto (450–650 mm yr−1), Chinyika (650–750 mm yr−1) and Chikwaka (>750 mm yr−1), commonly available organic materials, including manure and composted miombo leaf litter, applied in varying amounts by farmers were evaluated. Nitrogen release patterns were consistent with differences in resource quality. At 3 weeks after incorporation into soil at the onset of the rains, C. juncea and C. calothyrsus had released as high as 24% and 13% of added N respectively, compared with no more than 5–6% for the rest of the amended treatments. Most of the N released was lost through leaching as evidenced by progressive movement of NO3-N bulges beyond maize rooting depth following major rainfall events. Maize yields were significantly related to the size of profile mineral N fluxes, with the best linear relationship (R2 = 0.86) obtained with N available in the top 30 cm of soil at maize flowering. High grain yields of ~3 t ha−1 were only achieved with C. juncea applied at 4 t C ha−1, which also had highest NO3-N leaching losses. Conversely, the same application rate increased N immobilization by 30% and 42% under maize stover and sawdust, respectively, relative to the control. Results from farmers’ fields showed that organic resources traditionally used on smallholder farms are invariably of low quality relative to C. juncea and C. calothyrsus. However, they exhibited shorter N immobilization effects than was shown for maize stover and sawdust at Makoholi, suggesting that pre-application treatments, such as composting, employed by farmers enhance seasonal N benefits from these materials. Maize yields increased linearly with total N added in these resources in combination with N fertilizer, justifying the high organic matter loading strategy (e.g. >20 t ha−1 for manure, fresh litter and composted litter) used by farmers who often achieve high crop yields on such coarse sandy soils in Zimbabwe.  相似文献   

6.
Oxygen isotope analysis of planktonic and benthic foraminifera in piston core S-2 collected from the Shatsky Rise (33°21.75N, 159°07.70E; water depth 3107 m) provides a paleoceanographic record for the last 540 000 years in the northwestern Pacific Ocean. Although peaks in the abundance of sinistral Neogloboquadrina pachyderma occur during Marine Isotope Stage 2, and particularly 6 and 12, the southward shifting of the Subarctic front did not reach the core site during these glacial periods. However, mass accumulation rates of total organic carbon, biogenic opal, and terrigenous matter contents indicate that surface productivity increased during cold periods. In addition, the C/N ratio analyzed in organic matter reached values of up to 10 during glacial periods. These results imply that delivery of eolian dust to this site was enhanced by strengthened westerly winds during glacial periods. Down-core fluctuations in δ13C values of Globigerinoides ruber and Globorotalia inflata nearly overlap, particularly during the period from 540 to 260 ka. This latter trend suggest that the subtropical surface water mass prevailed at the core site throughout that period, based upon the very small vertical δ13C gradient through water column in modern Kuroshio Current water.  相似文献   

7.
Singh  Bajrang  Tripathi  K.P.  Jain  R.K.  Behl  H.M. 《Plant and Soil》2000,219(1-2):81-89
The study was carried out under three types of plantation forest of 40 years, growing on infertile sodic soils, poor in organic matter and N content, of Indogangetic alluvium at Lucknow (26°45 N; 80°53 E). Fine root biomass estimated under three forests did not differ much with season, or with species (106–113 g m-2) but varied with soil depth to 0.45 m. The proportion of very fine roots (<0.5 mm) increased with soil depth. Available N in soil was greatest under mixed forest followed by Eucalyptus camaldulensis and Acacia nilotica planted soils. N was maximum in summer season and decreased with soil depth. Nitrogen mineralization during anerobic incubation of 14 days could not be differentiated by tree species, but the monsoon season favoured the process and winter season retarded it. Mineralization decreased with soil depth corresponding to fine roots. There was a reduction in bulk density of soil, pH and EC in forested soil compared to a similar but non forested soil, whereas, organic C and total N increased in forested soils. N mineralization was found to be affected significantly with the fine root biomass and available N content in the soils, whereas negative relations of mineralized N with pH and EC were noticed, though these were not significantly different in this study.  相似文献   

8.
Large amounts of terrestrial organic C and N reserves lie in salt-affected environments, and their dynamics are not well understood. This study was conducted to investigate how the contents and dynamics of ‘native’ organic C and N in sandy soils under different plant species found in a salt-affected ecosystem were related to salinity and pH. Increasing soil pH was associated with significant decreases in total soil organic C and C/N ratio; particulate (0.05–2 mm) organic C, N and C/N; and the C/N ratio in mineral-associated (<0.05 mm) fraction. In addition, mineral-associated organic C and N significantly increased with an increase in clay content of sandy soils. During 90-day incubation, total CO2-C production per unit of soil organic C was dependent on pH [CO2-C production (g kg−1 organic C) = 22.5 pH – 119, R 2 = 0.79]. Similarly, increased pH was associated with increased release of mineral N from soils during 10-day incubation. Soil microbial biomass C and N were also positively related to pH. Metabolic quotient increased with an increase in soil pH, suggesting that increasing alkalinity in the salt-affected soil favoured the survival of a bacterial-dominated microbial community with low assimilation efficiency of organic C. As a result, increased CO2-C and mineral N were produced in alkaline saline soils (pH up to 10.0). This pH-stimulated mineralization of organic C and N mainly occurred in particulate but not in mineral-associated organic matter fractions. Our findings imply that, in addition to decreased plant productivity and the litter input, pH-stimulated mineralization of organic matter would also be responsible for a decreased amount of organic matter in alkaline salt-affected sandy soils.  相似文献   

9.
Van Schöll  L.  Van Dam  A.M.  Leffelaar  P.A. 《Plant and Soil》1997,188(2):211-219
The release of nitrogen from incorporated catch crop material in winter is strongly influenced by soil temperatures. A laboratory experiment was carried out to investigate this influence in the range of 1-15 °C. Samples of sandy soil or a mixture of sandy soil with rye shoots were incubated at 1-5-10-15 °C, and samples of sandy soil with rye roots were incubated at 5-10-15 °C. Concentrations of Nmin (NH4 +-N and NO3 --N) were measured after 0-1-2-4-7-10 weeks for the sandy soil and the sandy soil:rye shoot mixture, and after 0-2-7-10 weeks for the sandy soil:rye root mixture. At 1 °C, 20% of total organic N in the crop material had been mineralised after ten weeks, indicating that mineralisation at low temperatures is not negligible. Maximum mineralisation occurred at 15 °C; after ten weeks, it was 39% of total applied organic nitrogen from shoot and 35% from root material. The time course of mineralisation was calculated using an exponential decay function. It was found that the influence of temperature in the range 1-15 °C could be described by the Arrhenius equation, stating a linear increase of ln(k) with T-1, k being the relative mineralisation rate in day-1 and T the temperature (°C). A simulation model was developed in which decomposition, mineralisation and nitrification were modelled as one step processes, following first order kinetics. The relative decomposition rate was influenced by soil temperature and soil moisture content, and the mineralisation of N was calculated from the decomposition of C, the C to N ratio of the catch crop material and the C to N ratio of the microbial biomass. The model was validated first with the results of the experiment. The model was further validated with the results of an independent field experiment, with temperatures fluctuating between 3 and 20 °C. The simulated time course of mineralisation differed significantly from the experimental values, due to an underestimation of the mineralisation during the first weeks of incubation.  相似文献   

10.
The Pretoria Salt Pan, South Africa, a small (0.076 km2), shallow (Zmax = 2.85 m), hypersaline, maar lake, lies within a clearly-defined crater and is fed by a perennial, slightly saline (3 g l-1) artesian spring. The lake has two distinct solar-heated peaks in its temperature profile, each of these peaks located in a highly turbid (>80 JTU) layer below a steep chemocline. The upper thermal peak, located at a depth of 10 cm, was transient, with a distinct diel pattern of diurnal heating and nocturnal cooling. The lower thermal peak, located below a steep chemocline and centred at approximately 60 cm, was stable and showed a seasonal pattern of winter heating (maximum: 38.5°C) and summer cooling (minimum: 27.4°C). The unusual bathymetry of the lake, combined with the sheltering effect of the crater rim and steep salinity gradient between the surface (30–80 g l-1) and bottom water (280–310 g l-1) prevented windmixing of surface waters beyond a depth of approximately 50 cm. During a 28 month study all water deeper than 55 cm remained anaerobic, and the lake appeared to be meromictic.  相似文献   

11.
Summary A new alkalophilic Bacillus GK-8 overproduced three thermostable extracellular pectinases. The temperature optima was 60°C for all the three enzymes which retained full activity for 2 h. They had pH optima 5.4, 7.0 and 10.4 and were designated as PI, PII and PIII respectively. The half life at 80°C of PI, PII and PIII was 18 min., 12 min. and 12 min., respectively. The enzyme activity was stimulated by Mg2+, Ca2+, Zn2+, Co2+ and Mn2+ ions.  相似文献   

12.
We used sugar maple litter double-labeled with 13C and 15N to quantify fluxes of carbon (C) and nitrogen (N) between litter and soil in a northern hardwood forest and the retention of litter C and N in soil. Two cohorts of litter were compared, one in which the label was preferentially incorporated into non-structural tissue and the other structural tissue. Loss of 13C from this litter generally followed dry mass and total C loss whereas loss of 15N (20–30% in 1 year) was accompanied by large increases of total N content of this decaying litter (26–32%). Enrichment of 13C and 15N was detected in soil down to 10–15 cm depth. After 6 months of decay (November–May) 36–43% of the 13C released from the litter was recovered in the soil, with no differences between the structural and non-structural labeled litter. By October the percentage recovery of litter 13C in soil was much lower (16%). The C released from litter and remaining in soil organic matter (SOM) after 1 year represented over 30 g C m−2 y−1 of SOM accumulation. Recovery of litter 15N in soil was much higher than for C (over 90%) and in May 15N was mostly in organic horizons whereas by October it was mostly in 0–10 cm mineral soil. A small proportion of this N was recovered as inorganic N (2–6%). Recovery of 15N in microbial biomass was higher in May (13–15%) than in October (about 5%). The C:N ratio of the SOM and microbial biomass derived from the labeled litter was much higher for the structural than the non-structural litter and for the forest floor than mineral SOM, illustrating the interactive role of substrates and microbial activity in regulating the C:N stoichiometry of forest SOM formation. These results for a forest ecosystem long exposed to chronically high atmospheric N deposition (ca. 10 kg N ha−1 y−1) suggest possible mechanisms of N retention in soil: increased organic N leaching from fresh litter and reduced fungal transport of N from soil to decaying litter may promote N stabilization in mineral SOM even at a relatively low C:N ratio.  相似文献   

13.
Global warming will increase heat waves, but effects of abrupt heat stress on shoot–root interactions have rarely been studied in heat-tolerant species, and abrupt heat-stress effects on root N uptake and shoot C flux to roots and soil remains uncertain. We investigated effects of a high-temperature event on shoot vs. root growth and function, including transfer of shoot C to roots and soil and uptake and translocation of soil N by roots in the warm-season drought-tolerant C4 prairie grass, Andropogon gerardii. We heated plants in the lab and field (lab = 5.5 days at daytime of 30 + 5 or 10 °C; field = 5 days at ambient (up to 32 °C daytime) vs. ambient +10 °C). Heating had small or no effects on photosynthesis, stomatal conductance, leaf water potential, and shoot mass, but increased root mass and decreased root respiration and exudation per g. 13C-labeling indicated that heating increased transfer of recently-fixed C from shoot to roots and soil (the latter likely via increased fine-root turnover). Heating decreased efficiency of N uptake by roots (uptake/g root), but did not affect total N uptake or the transfer of labeled soil 15N to shoots. Though heating increased soil temperature in the lab, it did not do so in the field (10 cm depth); yet results were similar for lab and field. Hence, acute heating affected roots more than shoots in this stress-tolerant species, increasing root mass and C loss to soil, but decreasing function per g root, and some of these effects were likely independent of direct effects from soil heating.  相似文献   

14.
The study was carried out in a 40-yr old pine plantation on a Cambic Arenosol within the urban area of Berlin. Lime application (6.1 t ha-1) has led to a pH increase in the forest floor from 3.3 to 5.5 within one year and to a strong stimulation of macrofaunal and microbiological activity. Three years after liming, the C:N ratio of the forest floor decreased from 28 to 25 and P, Pb, Zn, Cu and Cd concentrations in organic matter increased significantly. The organic C pool of the forest floor was almost 7 t ha-1 lower in the limed plot which is attributed to increased microbial respiration. In the mineral soil too, C-pools are lower in the limed plot, amounting to 13.2 t ha-1 or 14% less than in the control. C:N ratios have narrowed significantly from 27–29 to 23 in 10–30 cm depth. The humic acid fraction is lower throughout the limed profile while the percentage of fulvic acids has increased significantly below 10 cm. The results point to severe losses of organic matter and to profound changes in its composition. This may be of consequences for site quality and leaching processes.  相似文献   

15.
Increases in the deposition of atmospheric nitrogen (N) influence N cycling in forest ecosystems and can result in negative consequences due to the leaching of nitrate into groundwaters. From December 1995 to February 1998, the Pan-European Programme for the Intensive and Continuous Monitoring of Forest Ecosystems measured forest conditions at a plot scale for conifer and broadleaf forests, including the performance of time series of soil solution chemistry. The influence of various ecosystem conditions on soil solution nitrate concentrations at these forest plots (n = 104) was then analyzed with a statistical model. Soil solution nitrate concentrations varied by season, and summer concentrations were approximately 25% higher than winter ones. Soil solution nitrate concentrations increased dramatically with throughfall (and bulk precipitation) N input for both broadleaf and conifer forests. However, at elevated levels of throughfall N input (more than 10 kg N ha–1 y–1), nitrate concentrations were higher in broadleaf than coniferous stands. This tree-specific difference was not observed in response to increased bulk precipitation N input. In coniferous stands, throughfall N input, foliage N concentration, organic layer carbon–nitrogen (C:N) ratio, and nitrate concentrations covaried. Soil solution nitrate concentrations in conifer plots were best explained by a model with throughfall N and organic layer C:N as main factors, where C:N ratio could be replaced by foliage N. The organic layer C:N ratio classes of more than 30, 25–30, and less than 25, as well as the foliage N (mg N g–1) classes of less than 13, 13–17, and more than 17, indicated low, intermediate, and high risks of nitrate leaching, respectively. In broadleaf forests, correlations between N characteristics were less pronounced, and soil solution nitrate concentrations were best explained by throughfall N and soil pH (0–10-cm depth). These results indicate that the responses of soil solution nitrate concentration to changes in N input are more pronounced in broadleaf than in coniferous forests, because in European forests broadleaf species grow on the more fertile soils.  相似文献   

16.
I analyzed the rates of net N mineralization and nitrification of soils from seven sites in a Hawaiian wet montane forest. The sites differ in age, ranging from 400 to 4,100,000 yr, but are comparable in other variables (all at 1200 miasl with 4000 mm or more mean annual rainfall), and the chronosequence simulated a development of soils from basaltic lava. Soils were incubated for 20 days at 17.5 °C, which is nearly equivalent to a mean field air temperature of the sites, and at an elevated temperature of 25.5 °C under three treatments: 1) field-wet without amendments, 2) air dried to a permanent wilting point, and 3) fertilized with phosphate (NaH2PO4) at the rate of 50 g P per g dry soil. Both mineralization and nitrification rates varied significantly among the sites at the field temperature (p<.00001). Fractions of the mineralized organic matter (indexed by the N produced per g organic C) increased sharply from the youngest to the 5000-yr site before declining abruptly to a near constant value from the 9000 to the 1,400,000-yr sites. Total organic C in the top soils (<15 cm deep) increased almost linearly with age across the sites. Consequently, net NH4- and NO3-N produced on an area basis (g m-2 20 d-1) increased sharply from 0.2 in the youngest site to 1.2 in the 5000-yr site, then both became depressed once but steadily increased again. The fraction of organic matter mineralized, and the net N turnover rates were outstandingly high in the oldest site where a large amount of organic matter was observed; the topsoil organic matter which was used in this analysis appeared to be highly labile, whereas the subsurface organic matter could be relatively recalcitrant. As suggested by earlier workers, the initial increase in N turnover seemed to correspond to the increasing quantity of N in the soils through atmospheric deposition and biological fixation. The later decline in fraction of organic matter mineralized seemed to relate to increasing soil C/N ratios, increasingly recalcitrant organic matter, and poorer soil drainage with age. The elevated temperature treatment produced significantly higher amounts of N mineralization, except for the youngest site where N was most limiting, and for two sites where soil waterlogging might be severe. P fertilization invariably resulted in slower N turnovers, suggesting that soil microbes responded to added P causing N immobilization. The youngest site did not significantly respond to added P. The magnitude of immobilization was higher in older than in younger soils, suggesting that P more strongly limits microbial populations in the older soils.  相似文献   

17.
We established a long-term field study in an old growth coniferous forest at the H.J. Andrews Experimental Forest, OR, USA, to address how detrital quality and quantity control soil organic matter accumulation and stabilization. The Detritus Input and Removal Treatments (DIRT) plots consist of treatments that double leaf litter, double woody debris inputs, exclude litter inputs, or remove root inputs via trenching. We measured changes in soil solution chemistry with depth, and conducted long-term incubations of bulk soils from different treatments in order to elucidate effects of detrital inputs on the relative amounts and lability of different soil C pools. In the field, the addition of woody debris increased dissolved organic carbon (DOC) concentrations in O-horizon leachate and at 30 cm, but not at 100 cm, compared to control plots, suggesting increased rates of DOC retention with added woody debris. DOC concentrations decreased through the soil profile in all plots to a greater degree than did dissolved organic nitrogen (DON), most likely due to preferential sorption of high C:N hydrophobic dissolved organic matter (DOM) in upper horizons; percent hydrophobic DOM decreased significantly with depth, and hydrophilic DOM had a much lower and less variable C:N ratio. Although laboratory extracts of different litter types showed differences in DOM chemistry, percent hydrophobic DOM did not differ among soil solutions from different detrital treatments in the field, suggesting that microbial processing of DOM leachate in the field consumed easily degradable components, thus equalizing leachate chemistry among treatments. Total dissolved N leaching from plots with intact roots was very low (0.17 g m−2 year−1), slightly less than measured deposition to this very unpolluted forest (~s 0.2 g m−2 year−1). Total dissolved N losses showed significant increases in the two treatments without roots whereas concentrations of DOC decreased. In these plots, N losses were less than half of estimated plant uptake, suggesting that other mechanisms, such as increased microbial immobilization of N, accounted for retention of N in deep soils. In long-term laboratory incubations, soils from plots that had both above- and below-ground litter inputs excluded for 5 years showed a trend towards lower DOC loss rates, but not lower respiration rates. Soils from plots with added wood had similar respiration and DOC loss rates as control soils, suggesting that the additional DOC sorption observed in the field in these soils was stabilized in the soil and not readily lost upon incubation.  相似文献   

18.
Large increases in nitrogen (N) inputs to terrestrial ecosystems typically have small effects on immediate N outputs because most N is sequestered in soil organic matter. We hypothesized that soil organic N storage and the asynchrony between N inputs and outputs result from rapid accumulation of N in stable soil organic pools. We used a successional sequence on floodplains of the Tanana River near Fairbanks, Alaska to assess rates of stable N accumulation in soils ranging from 1 to 500+ years old. One-year laboratory incubations with repeated leaching separated total soil N into labile (defined as inorganic N leached) and stable (defined as total minus labile N) pools. Stable N pools increased faster (2 g N m–2 yr–1) than labile N (0.4 g N m–2 yr–1) pools during the first 50 years of primary succession; labile N then plateaued while stable and total N continued to increase. Soil C pools showed similar trends, and stable N was correlated with stable C (r2 = 0.95). From 84 to 95 % of soil N was stable during our incubations. Over successional time, the labile N pool declined as a proportion of total N, but remained large on an aerial basis (up to 38 g N m–2). The stoichiometry of stable soil N changed over successional time; C:N ratios increased from 10 to 22 over 275 years (r2 = 0.69). A laboratory 15N addition experiment showed that soils had the capacity to retain much more N than accumulated naturally during succession. Our results suggest that most soil N is retained in a stable organic pool that can accumulate rapidly but is not readily accessible to microbial mineralization. Because stable soil organic matter and total ecosystem organic matter have flexible stoichiometry, net ecosystem production may be a poor predictor of N retention on annual time scales.  相似文献   

19.
Ammonia-nitrogen excretion in Daphnia pulex   总被引:3,自引:2,他引:1  
Ammonia-nitrogen excretion rates were measured in natural summer and cultured populations of Daphnia pulex from Silver Lake, Clay County, Minnesota, USA during 1973. The mean rate of ammonia-nitrogen excretion for the summer populations was 0.20 µg N animal–1 day–1 or 5.11 µg N mg–1 dry body weight day–1 (N = 80) measured at 15°, 20°, and 25°C. These rates appear to be temperature and weight dependent, but they are probably affected by factors other than temperature and dry body weight. Ammonia-nitrogen excretion rates of Daphnia pulex cultured on Chlamydomonas reinhardi yielded the following relationship with temperature: Log10E = (0.061) T 1.773, where E is µg N animal–1 day–1 and T is temperature °C. The ammonia-nitrogen excretion on a mg–1 dry body weight day–1 basis was related to temperature according to the following similar expression Log10E = (0.043) T + 0.153, where E is µg N mg–1 dry body weight day–1, and T is temperature °C. The length-weight relationship of Daphnia pulex for the summer populations (N = 1583) was log10W = (0.526) Log10L + 1.357, where W is weight in µg and L is length in mm.  相似文献   

20.
Stable isotopic structure of aquatic ecosystems   总被引:1,自引:0,他引:1  
Isotopic, biogeochemical and ecological structure can provide a new dimension for understanding material flows, and the simultaneous function and structure of an ecosystem. Distributions ofδ 13C andδ 15N for biogenic substances in the Nanakita river estuary involving Gamo lagoon in Japan were investigated to construct isotope biogeochemical and ecological structure for assessing fate and transfer of organic matter, and food web structure. The isotopic framework of the ecosystem was successfully described in aδ 15N–δ 13C map. In this estuary the variations of isotope ratios of biogenic substances were clearly explained by the mixing of land-derived organic matter, and marine-derived organic matter. A trophic-level effect of15N enrichment was clearly observed. Organisms were classified into three groups depending upon the contribution of land-derived organic matter in a food chain. Almost all biota except mollusca in the lagoon depend on organic matter of marine origin. The contributions of both land and marine organic matter were comparable for mollusca in the lagoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号