共查询到20条相似文献,搜索用时 0 毫秒
1.
Purification of Saccharomyces cerevisiae RNase H(70) and identification of the corresponding gene 总被引:3,自引:0,他引:3
Peter Frank Christa Braunshofer-Reiter Anneliese Karwan Rudolf Grimm Ulrike Wintersberger 《FEBS letters》1999,450(3):774-256
We purified Saccharomyces cerevisiae RNase H(70) to homogeneity, using an optimized chromatographic purification procedure. Renaturation gel assay assigned RNase H activity to a 70 kDa polypeptide. Sequencing of tryptic peptides identified the open reading frame YGR276c on chromosome VII of the S. cerevisiae genome as the corresponding gene, which encodes a putative polypeptide of molecular mass of 62849. We therefore renamed this gene RNH70. Immunofluorescence microscopy using a RNH70-EGFP fusion construct indicates nuclear localization of RNase H(70). Deletion of RNH70 from the yeast genome did not result in any serious phenotype under the conditions tested. Homology searches revealed striking similarity with a number of eukaryotic proteins and open reading frames, among them the chimpanzee GOR protein, a homolog of a human autoimmune antigen, found to elicit autoimmune response in patients infected with hepatitis C virus. 相似文献
2.
Ladislav Kov
《Biochimica et Biophysica Acta (BBA)/General Subjects》1985,840(3):317-323
The claim that Ca may be a dispensable element for yeast Saccharomyces cerevisiae has been reexamined. The cells of S. cerevisiae could grow in media which contained no added Ca and were deprived of contaminating Ca2+ by filtration through a Chelex 100 column. Also, the cells were able to grow in the presence of fairly high concentrations of EGTA. The apparent intracellular concentrations of Ca, assessed from the content of radioactive 45Ca in cells preloaded with 45CaCl2, could vary within the range of approx. 2 nM to 2.8 mM, without adversively affecting growth or morphology of the cells. An extremely low affinity for Ca2+ of the system taking up Ca into the cells was corroborated. However, even the Chelex 100-treated media were found in contain 1–5 μM Ca when maintained in glass culture vessels. Also, the ability of the cells to take up Ca from a medium containing surplus of EGTA or EDTA was demonstrated. su14CEDTA, alone or in the presence of Ca, could also be transported into the cells. It has been inferred that Ca must be as essential for yeast as it is for other eucaryotic organisms. The omnipresence of contaminating Ca and peculiarities of the Ca transporting system, combined with an intricate intracellular compartmentation of Ca, would account for the impossibility to prove the importance of Ca for yeast by direct growth studies. 相似文献
3.
Summary We report here the isolation of temperature-sensitive mutants of the yeast Saccharomyces cerevisiae which exhibit cdc phenotypes. The recessive mutations defined four complementation groups, named ore1, ore2, ore3 and ore4. At the non-permissive temperature, strains bearing these mutations arrested in the G1 phase of the cell cycle. The wild-type allele of the gene altered in ore2 mutants was cloned. The nucleotide sequence of a fragment which can complement the mutation showed the presence of an open reading frame capable of encoding a protein with 286 amino acid residues. The deduced amino acid sequence showed 25% identity with that of the Escherichia coli 1-pyrroline-5-carboxylate reductase, an enzyme of the pathway for the biosynthesis of proline. The ore2 mutants, correspondingly, were found to be capable of growing at the non-permissive temperature on a synthetic medium supplemented with proline. In addition, the chromosomal location of the gene and its restriction map were compatible with those previously reported for the PRO3 gene which encodes the S. cerevisiae 1-pyrroline-5-carboxylate reductase. 相似文献
4.
5.
Jan Ahlers 《生物化学与生物物理学报:生物膜》1981,649(3):550-556
The reaction of plasma membrane ATPase from yeast with Mg2+ and Mg · ATP was studied in a temperature range of 10 – 30°C. The random mechanism of activation by Mg2+ and the pseudocompetitive inhibition at higher concentrations was not altered when the temperature was varied, nor were the kinetic constants representing substrate binding. However, at low temperature, the affinity of the enzyme for Mg2+ is greatly reduced. The Arrhenius plot of log V vs. 1/T shows straight lines with an inflection point at 24°C, which disappears in the presence of detergent. Calorimetric studies of the plasma membranes show a transition point at the same temperature. From these findings we suppose that Mg2+ is bound at a regulatory site of the ATPase, which is influenced by the surrounding phospholipids. 相似文献
6.
The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration. 相似文献
7.
The budding yeast Saccharomyces cerevisiae has two HSP90-related genes per haploid genome, HSP82 and HSC82. Random mutations were induced in vitro in the HSP82 gene by treatment of the plasmid with hydroxylamine. Four temperature-sensitive (ts) mutants and one simultaneously is and cold-sensitivie (cs) mutant were then selected in a yeast strain in which HSC82 had previously been disrupted. The mutants were found to have single base changes in the coding region, which caused single amino acid substitutions in the HSP82 protein. All of these mutations occurred in amino acid residues that are well conserved among HSP90-related proteins of various species from Escherichia coli to human. Various properties including cell morphology, macromolecular syntheses and thermosensitivity were examined in each mutant at both the permissive and nonpermissive temperatures. The mutations in HSP82 caused pleiotropic effects on these properties although the phenotypes exhibited at the nonpermissive temperature varied among the mutants. 相似文献
8.
A. Chaciska W. Wony M. Boguta A. Misicka M. Brzyska D. Elbaum 《Letters in Peptide Science》2002,9(4-5):197-201
Deposition of beta-amyloid peptide (1–42) (AP) in the brain is an early event linked with pathogenesis of cell injury and death in Alzheimer disease. Previous studies have demonstrated that AP induces cytotoxicity in several types of human cells. Surprisingly, the peptide was found not only to be non toxic for yeast cells, but to stimulate growth of yeast culture. The results are consistent with AP binding to yeast cell as illustrated by binding isotherms with theapparent dissociation constant of 8 × 10-7 M and Bmax of 4.7 × 104 molecules/cell. 相似文献
9.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacoular proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40–110 nm; bouyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100–250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae. 相似文献
10.
11.
【目的】在酿酒酵母中异源表达双孢蘑菇来源的酪氨酸酶基因PPO2,并研究酪氨酸酶在酿酒酵母胞内及胞外的酶学特性。【方法】提取双孢蘑菇总RNA,通过RT-PCR克隆酪氨酸酶基因PPO2,构建表达载体pSP-G1-PPO2,并转化至酿酒酵母进行表达,采用镍亲和层析纯化蛋白并研究其酶学性质。【结果】在酿酒酵母中正确表达了大小为65 kDa的酪氨酸酶蛋白。重组酶能催化底物酪氨酸产生黑色素。体外活性测定表明,酪氨酸酶催化最适温度为45°C,以酪氨酸和多巴为底物时最适pH分别为7.0和8.0。在酿酒酵母中测得底物酪氨酸浓度低于2.5 mg/mL时,黑色素的产量与底物浓度呈现正相关性。【结论】来源于双孢蘑菇的酪氨酸酶基因PPO2在酿酒酵母中成功表达,重组酶具有良好的酶学特性。利用酪氨酸酶产物黑色素的产量与底物浓度呈现正相关性这一特性,可将其作为细胞酪氨酸产量的传感器,为高通量筛选酪氨酸高产菌株提供了思路。 相似文献
12.
13.
The maltose transport system of Saccharomyces cerevisiae exists in two forms with Km values of approx. 4 mM and 70 mM, respectively. The Vmax of the high-Km form is about 4-fold greater than the Vmax of the low one. A rapid and irreversible inactivation of both forms is detected on protein synthesis impairment. This inactivation is stimulated by the catabolism of fermentable sugars and prevented during ethanol catabolism. It is concluded that both forms of the maltose transport system are regulated by catabolite inactivation. 相似文献
14.
15.
Because of many advantages, the yeast Saccharomyces cerevisiae is increasingly being employed for expression of recombinant proteins. Usually, hybrid plasmids (shuttle vectors) are employed as carriers to introduce the foreign DNA into the yeast host. Unfortunately, the transformed host often suffers from some kind of instability, tending to lose or alter the foreign plasmid. Construction of stable plasmids, and maintenance of stable expression during extended culture, are some of the major challenges facing commercial production of recombinant proteins. This review examines the factors that affect plasmid stability at the gene, cell, and engineering levels. Strategies for overcoming plasmid loss, and the models for predicting plasmid instability, are discussed. The focus is on S. cerevisiae, but where relevant, examples from the better studied Escherichia coli system are discussed. Compared to free suspension culture, immobilization of cells is particularly effective in improving plasmid retention, hence, immobilized systems are examined in some detail. Immobilized cell systems combine high cell concentrations with enhanced productivity of the recombinant product, thereby offering a potentially attractive production method, particularly when nonselective media are used. Understanding of the stabilizing mechanisms is a prerequisite to any substantial commercial exploitation and improvement of immobilized cell systems. 相似文献
16.
17.
Summary
cyrl-2 is a temperature-sensitive mutation of the yeast adenylate cyclase structural gene, CYR1. The cyrl-2 mutation has been suggested to be a UGA mutation since a UGA suppressor SUP201 has been isolated as a suppressor of the cyrl-2 mutation. Construction of chimeric genes restricted the region containing the cyrl-2 mutation, and the cyrl-2 UGA mutation was identified at codon 1282, which lies upstream of the region coding for the catalytic domain of adenylate cyclase. Alterations in the region upstream of the cyrl-2 mutation site result in null mutations. The complete open reading frame of the cyrl-2 gene expressed under the control of the GAL1 promoter complemented cyrl-dl in a galactose-dependent manner. These results suggest that at the permissive temperature weak readthrough occurs at the cyrl-2 mutation site to produce low levels of active adenylate cyclase. An endogenous suppressor in yeast cells is assumed to be responsible for this readthrough. 相似文献
18.
19.
Christine Lang-Hinrichs Ingo Queck Georg Büldt Ulf Stahl Volker Hildebrandt 《Molecular & general genetics : MGG》1994,244(2):183-188
The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium
. This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium.
相似文献
相似文献
20.
Jela Brozmanová ?ubica ?ernáková Viera Vl?ková Jozef Duraj Ivana Fridrichová 《Molecular & general genetics : MGG》1991,227(3):473-480
Summary The Escherichia coli recA protein coding region was ligated into an extrachromosomally replicating yeast expression vector downstream of the yeast alcohol dehydrogenase promoter region to produce plasmid pADHrecA. Transformation of the wild-type yeast strains YNN-27 and 7799-4B, as well as the recombination-deficient rad52-t C5-6 mutant, with this shuttle plasmid resulted in the expression of the bacterial 38 kDa RecA protein in exponential phase cells. The wild-type YNN27 and 7799-4B transformants expressing the bacterial recA gene showed increased resistance to the toxic effects of both ionizing and ultraviolet radiation. RecA moderately stimulated the UV-induced mutagenic response of 7799-4B cells. Transformation of the rad52-t mutant with plasmid pADHrecA did not result in the complementation of sensitivity to ionizing radiation. Thus, the RecA protein endows the yeast cells with additional activities, which were shown to be error-prone and dependent on the RAD52 gene. 相似文献