首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dictyostelium discoideum cells normally exist as individual amoebae, but will enter a period of multicellular development upon starvation. The initial stages of development involve the aggregation of individual cells, using cAMP as a chemoattractant. Chemotaxis is initiated when cAMP binds to its receptor, cAR1, and activates the associated G protein, Gα2βγ. However, chemotaxis will not occur unless there is a high density of starving cells present, as measured by high levels of the secreted quorum sensing molecule, CMF. We previously demonstrated that cells lacking PldB bypass the need for CMF and can aggregate at low cell density, whereas cells overexpressing pldB do not aggregate even at high cell density. Here, we found that PldB controlled both cAMP chemotaxis and cell sorting. PldB was also required by CMF to regulate G protein signaling. Specifically, CMF used PldB, to regulate the dissociation of Gα2 from Gβγ. Using fluorescence resonance energy transfer (FRET), we found that along with cAMP, CMF increased the dissociation of the G protein. In fact, CMF augmented the dissociation induced by cAMP. This augmentation was lost in cells lacking PldB. PldB appears to mediate the CMF signal through the production of phosphatidic acid, as exogenously added phosphatidic acid phenocopies overexpression of pldB. These results suggest that phospholipase D activity is required for CMF to alter the kinetics of cAMP-induced G protein signaling.  相似文献   

2.
A M Nakhla  J Leonard  D J Hryb  W Rosner 《Steroids》1999,64(3):213-216
The plasma protein, sex hormone-binding globulin (SHBG) binds to a receptor (R(SHBG)) on cell membranes to form an SHBG-R(SHBG) complex. When an appropriate steroid binds to this complex, there is a rapid rise in intracellular cyclic adenosine monophosphate (cAMP). Although the system is moderately well characterized, the molecular cloning of R(SHBG) has not been accomplished and there is a paucity of evidence regarding the mechanism of transmission of the R(SHBG) signal. In this communication, we offer two independent lines of evidence that a G protein is involved in R(SHBG) signal propagation. Exposure of cell membranes containing R(SHBG) to a non-hydrolyzable analog of guanosine triphosphate (guanylyl-5'-imidodiphosphate) caused a substantive decrease in the binding of SHBG to R(SHBG). This behavior is typical of membrane receptors coupled to G proteins and has been used by others as evidence to support that relationship. Another set of experiments involved the assumption that, if R(SHBG)-induced increases in cAMP were diminished when the wild-type alpha subunit of a G protein was replaced with mutants that were inefficient/ineffective in signal transduction, then the idea that G proteins were involved in that signal would be buttressed. Hence, we infected COS-1 cells with a construct containing such mutants, along with a cAMP response element reporter, and demonstrated a marked decrease in R(SHBG)-engendered reporter activity, e.g. cAMP generation.  相似文献   

3.
Nerve growth factor (NGF) and the ubiquitous second messenger cyclic AMP (cAMP) are both implicated in neuronal differentiation. Multiple studies indicate that NGF signals to at least a subset of its targets via cAMP, but the link between NGF and cAMP has remained elusive. Here, we have described the use of small molecule inhibitors to differentiate between the two known sources of cAMP in mammalian cells, bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC) and G protein-regulated transmembrane adenylyl cyclases. These inhibitors, along with sAC-specific small interfering RNA, reveal that sAC is uniquely responsible for the NGF-elicited rise in cAMP and is essential for the NGF-induced activation of the small G protein Rap1 in PC12 cells. In contrast and as expected, transmembrane adenylyl cyclase-generated cAMP is responsible for Rap1 activation by the G protein-coupled receptor ligand PACAP (pituitary adenylyl cyclase-activating peptide). These results identify sAC as a mediator of NGF signaling and reveal the existence of distinct pathways leading to cAMP-dependent signal transduction.  相似文献   

4.
cAMP signals are received and transmitted by multiple isoforms of cAMP-dependent protein kinases (PKAs), typically determined by their specific regulatory subunits. We describe changes in the cAMP signal transduction pathway during cell cycle progression in synchronized rat thyroid cells. Both PKA type II (PKAII) localization and nuclear cAMP signaling are significantly modified during G(0) and G(1)-S transitions. G(1) is characterized by PKA activation and amplified cAMP signal transduction. This is associated with a decrease in the concentration of RI and RII regulatory subunits and enhanced anchoring of PKAII to the Golgi-centrosome region. Just prior to S, the cAMP pathway is depressed. Up-regulation of the pathway by exogenous cAMP in G(1) inhibited the subsequent decay of the Cdk inhibitor p27 and delayed the onset of S phase. Forced translocation of endogenous PKAII to the cytosol down-regulated cAMP signaling, advancing the timing of p27 decay and inducing premature exit from G(1). These data indicate that membrane-bound PKA amplifies the transduction of cAMP signals in G(1) and that the length of G(1) is influenced by cAMP-PKA.  相似文献   

5.
Regulation and function of G alpha protein subunits in Dictyostelium   总被引:28,自引:0,他引:28  
We have examined the developmental regulation and function of two G alpha protein subunits, G alpha 1 and G alpha 2, from Dictyostelium. G alpha 1 is expressed in vegetative cells through aggregate stages while G alpha 2 is inducible by cAMP pulses and preferentially expressed in aggregation. Our results suggest that G alpha 2 encodes the G alpha protein subunit associated with the cAMP receptor and mediates all known receptor-activated intracellular signal transduction processes, including chemotaxis and gene regulation. G alpha 1 appears to function in both the cell cycle and development. Overexpression of G alpha 1 results in large, multinucleated cells that develop abnormally. The central role that these G alpha proteins play in signal transduction processes and in controlling Dictyostelium development is discussed.  相似文献   

6.
Cyclic AMP signaling is involved in most aspects of differentiation and maturation of the granulosa cells in the ovarian follicle. As the genetic programs activated at different stages of follicle growth maturation are being elucidated, it is becoming increasingly difficult to reconcile the simplicity of the cAMP cascade with the complexity and the divergent patterns of gene expression activated in these cells. To account for these divergent outcomes of the cAMP signal, three aspects of this signaling cascade in granulosa cells will be reviewed. We will discuss the evidence for gonadotropin receptors coupling to different G proteins and effectors. Next, we will explore the possibility that the temporal and spatial dimensions of the cAMP signal itself may contribute to the diverse outcomes. Finally, we will summarize available data showing that the cAMP signal is distributed through several cascades of kinase activation. It is hoped this compendium will provide a framework with which to understand how the initial signals activated by gonadotropins control the complex patterns of gene expression that are required for follicle maturation and ovulation.  相似文献   

7.
Using PCR technology, we have cloned parts of three developmentally regulated putative serine/threonine kinases from Dictyostelium. All show significant homology to members of the cAMP-dependent protein kinase A/protein kinase C subfamilies. A genomic clone encoding one of these, DdPK3, has been isolated and sequenced. The open reading frame encodes a protein of 648 amino acids with the conserved kinase domain in the C-terminal half. The protein encoded by this gene is unusual in that it contains long homopolymer runs in the N-terminal half of the protein, including a long run of 88 amino acids in which 73 are glutamine residues. To examine the function of DdPK3, a gene disruption was created via homologous recombination. Ddpk3- cells do not aggregate by themselves but will co-aggregate with wild-type cells. However, after aggregation these cells are 'sloughed off' and do not proceed further through development, but are found as a discrete mass alongside the fruiting body formed by the wild-type cells. Analysis of signal transduction pathways indicates that cAMP pulse-induced expression of aggregation stage-specific genes is normal in Ddpk3- cells, as is induction of the prestalk gene Ddras in single cell assays. However, cAMP induction of the late promoters of cAMP receptor cAR1 and of two prespore-specific genes is absent under similar conditions. These cells show normal activation of adenylate cyclase and normal phosphorylation of the G alpha protein G alpha 2 in response to cAMP. The possible role of DdPK3 in Dictyostelium development is discussed.  相似文献   

8.
Following its production by adenylyl cyclases, the second messenger cAMP is in involved in pleiotrophic signal transduction. The effectors of cAMP include the cAMP-dependent protein kinase (PKA), the guanine nucleotide exchange factor Epac (exchange protein activated by cAMP), and cAMP-dependent ion channels. In turn, cAMP signaling is attenuated by phosphodiesterase-catalyzed degradation. The association of cAMP effectors and the enzymes that regulate cAMP concentration into signaling complexes helps to explain the differential signaling initiated by members of the G(s)-protein coupled receptor family. The signal transduction complex formed by the scaffold protein mAKAP (muscle A kinase-anchoring protein) at the nuclear envelope of both striated myocytes and neurons contains three cAMP-binding proteins, PKA, Epac1, and the phosphodiesterase PDE4D3. In addition, the mAKAP complex also contains components of the ERK5 MAP kinase signaling pathway, the calcium release channel ryanodine receptor and the phosphatases PP2A as well as calcineurin. Analysis of the mAKAP complex illustrates how a macromolecular complex can serve as a node in the intracellular signaling network of cardiac myocytes to integrate multiple cAMP signals with those of calcium and MAP kinases to regulate the hypertrophic actions of several hormones.  相似文献   

9.
ABSTRACT. Dictyostelium discoideum has a well characterized life cycle where unicellular growth and multicellular development are separated events. Development is dependent upon signal transduction mediated by cell surface, cAMP receptor/G protein linkages. Secreted cAMP acts extracellularly as a primary signal and chemoattractant. There are 4 genes for the distinct cAMP receptor subtypes, CAR1, CAR2, CAR3 and CAR4. These subtypes are expressed with temporally and spatially specific patterns and cells carrying null mutations for each gene have distinct developmental phenotypes. These results indicate an essential role for cAMP signalling throughout Dictyostelium development to regulate such diverse pathways as cell motility, aggregation (multicellularity), cytodifferentiation, pattern formation and cell type-specific gene expression.  相似文献   

10.
Classical cytotoxic therapy has been minimally useful in the treatment of hepatocellular carcinoma. In an effort to develop a new approach to the treatment of this neoplasm, we have investigated the signal transduction pathways regulating the growth of human hepatoma cells. In the data reported here, cyclic AMP (cAMP), a negative growth regulator for many cells of epithelial origin, induced G1 synchronization and apoptosis in the HepG2 human hepatoma cell line. The effects of cAMP on the components of the G1/S transition were analyzed. There was no detectable effect of two different cAMP analogs, 8-bromo cAMP or dibutyryl cAMP on the level of the D-type cyclins, cyclin E, cyclin-dependent kinase 2, cyclin-dependent kinase 4, p53, or the cyclin-dependent kinase inhibitors p21 or p27. In contrast, the cAMP analogs induced a dramatic downregulation of cyclin A protein, cyclin A messenger RNA, and cyclin A-dependent kinase activity. Cyclin A-dependent kinase has been shown to be required for the G1-S transition. Furthermore, cyclin A deregulation has been implicated in the pathogenesis of hepatocellular carcinoma. The data reported here suggest a novel signal transduction-based approach to hepatoma therapy.  相似文献   

11.
Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-protein-mediated cAMP signal, which induces a protein phosphorylation cascade. Yeast strains without a functional CDC25 gene were deficient in basal cAMP synthesis and in the glucose-induced cAMP signal. Addition of dinitrophenol, which in wild-type strains strongly stimulates in vivo cAMP synthesis by lowering intracellular pH, did not enhance the cAMP level. cdc25 disruption mutants, in which the basal cAMP level was restored by the RAS2val19 oncogene or by disruption of the gene (PDE2) coding for the high-affinity phosphodiesterase, were still deficient in the glucose- and acidification-induced cAMP responses. These results indicate that the CDC25 gene product is required not only for basal cAMP synthesis in yeast but also for specific activation of cAMP synthesis by the signal transmission pathway leading from glucose to adenyl cyclase. They also show that intracellular acidification stimulates the pathway at or upstream of the CDC25 protein. When shifted to the restrictive temperature, cells with the temperature sensitive cdc25-5 mutation lost their cAMP content within a few minutes. After prolonged incubation at the restrictive temperature, cells with this mutation, and also those with the temperature sensitive cdc25-1 mutation, arrested at the 'start' point (in G1) of the cell cycle, and subsequently accumulated in the resting state G0. In contrast with cdc25-5 cells, however, the cAMP level did not decrease and normal glucose- and acidification-induced cAMP responses were observed when cdc25-1 cells were shifted to the restrictive temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Control of voltage-dependent Ca2+ channels by G protein-coupled receptors   总被引:9,自引:0,他引:9  
G proteins act as transducers between membrane receptors activated by extracellular signals and enzymatic effectors controlling the concentration of cytosolic signal molecules such as cAMP, cGMP, inositol phosphates and Ca2+. In some instances, the receptor/G protein-induced changes in the concentration of cytosolic signal molecules correlate with activity changes of voltage-dependent Ca2+ channels. Ca2+ channel modulation, in these cases, requires the participation of protein kinases whose activity is stimulated by cytosolic signal molecules. The respective protein kinases phosphorylate Ca2+ channel-forming proteins or unknown regulatory components. More recent findings suggest another membrane-confined mechanism that does not involve cytosolic signal molecules but rather a more direct control of voltage-dependent Ca2+ channels by G proteins. Modulation of Ca2+ channel activity that follows this apparently membrane-confined mechanism has been described to occur in neuronal, cardiac, and endocrine cells. The G protein involved in the hormonal stimulation of Ca2+ channels in endocrine cells may belong to the family of Gi-type G proteins, which are functionally uncoupled from activating receptors by pertussis toxin. The G protein Gs, which is activated by cholera toxin, may stimulate cardiac Ca2+ channels without the involvement of a cAMP-dependent intermediate step. Hormonal inhibition of Ca2+ channels in neuronal and endocrine cells is mediated by a pertussis toxin-sensitive G protein, possibly Go. Whether G proteins act by binding directly to Ca2+ channels or through interaction with as yet undetermined regulatory components of the plasma membrane remains to be clarified.  相似文献   

13.
We demonstrate here the regulatory role of cAMP in cell cycle of Candida albicans. cAMP was found to be a positive signal for growth and morphogenesis. Phosphodiesterase inhibitor aminophylline exhibited significant effects, i.e., increased growth, as well as induced morphogenesis. Atropine and trifluoperazine negatively regulated (inhibited) growth and did not induce morphogenesis. These changes were attributed to increase in cAMP levels and protein kinase A (PKA) activity in presence of aminophylline, while reduction was observed in atropine and trifluoperazine (TFP) grown cells. Alteration in cAMP signaling pathway affected the cell cycle progression in Candida albicans. Increased cAMP levels in aminophylline grown cells reduced the duration of cell cycle by inciting the cell cycle-specific expression of G1 cyclins (CLN1 and CLN2). However atropine and trifluoperazine delayed the expression of G1 cyclins and hence prolonged the cell cycle. Implication of cAMP signaling pathway in both the cell cycle and morphogenesis further opened the channels to explore the potential of this pathway to serve as a target for development of new antifungal drugs.  相似文献   

14.
Fifty years ago, cyclic AMP was discovered as a second messenger of hormone action, heralding the age of signal transduction. Many cellular processes were found to be regulated by cAMP and the related cyclic GMP. Cyclic nucleotides function by binding to and activating their effectors - protein kinase A, protein kinase G, cyclic-nucleotide-regulated ion channels and the guanine nucleotide-exchange factor Epac. Recent structural insights have now made it possible to propose a general structural mechanism for how cyclic nucleotides regulate these proteins.  相似文献   

15.
实验以低氧 3h后复氧期间心肌细胞的生存率和LDH的释放量为指标 ,观察Gi/o蛋白及其下游成分在低氧预处理 (hypoxicpreconditioning ,HP)心肌保护中的作用。与单纯低氧组相比 ,HP组 ( 2 5min低氧 30min复氧作为HP)细胞生存率增高 ,LDH释放减少 (P <0 0 1)。用NEM预处理 ,能完全模拟HP的心肌细胞保护作用 ;而用PTX阻断Gi/o蛋白 ,或Forskolin和 8 Br cAMP预处理后 ,再给予HP及低氧 3h/复氧 1h ,则细胞生存率降低 ,LDH释放增加 (P <0 0 1) ;U 7312 2预处理后 ,细胞生存率和LDH释放量无差异 (P >0 0 5 )。结果提示 :Gi/o蛋白通过抑制AC ,减少第二信使cAMP的生成介导了HP的心肌保护作用。PLC可能不参与HP的心肌保护作用  相似文献   

16.
Mitogen-induced initiation of DNA synthesis in quiescent Chinese hamster lung fibroblasts (CCL39) is strongly inhibited by 8-Br cAMP and cAMP-evaluating agents (prostaglandin E1, cholera toxin, isobutylmethylxanthine). This inhibition is reversible and occurs very early in G0/G1. As exponential growth is much less affected by increased cAMP, we propose that cAMP inhibits an early signal essential for the exit from G0. CCL39 cells can be stimulated by alpha-thrombin, which activates phosphoinositide (PI) breakdown, as well as by mitogens (FGF or FGF + serotonin) which do not involve the PI pathway. Here we show that the action of both classes of mitogens is likewise inhibited by cAMP. Therefore, although PI breakdown is inhibited by cAMP in CCL39 cells, this effect cannot entirely account for th antimitogenic activity of cAMP. Other early steps of the mitogenic response must be also affected.  相似文献   

17.
Rap1b has been implicated in the transduction of the cAMP mitogenic signal. Rap1b is phosphorylated and activated by cAMP, and its expression in cells where cAMP is mitogenic leads to an increase in G(1)/S phase entry and tumor formation. The PCCL3 thyroid follicular cells represent a differentiated and physiologically relevant system that requires thyrotropin (TSH), acting via cAMP, for a full mitogenic response. In this model system, cAMP stimulation of DNA synthesis requires activation and phosphorylation of Rap1b by the cAMP-dependent protein kinase A (PKA). This scenario presents the challenge of identifying biochemical processes involved in the phosphorylation-dependent Rap1b mitogenic action. In thyroid cells, Akt has been implicated in the stimulation of cell proliferation by TSH and cAMP. However, the mechanism(s) by which cAMP regulates Akt activity remains unclear. In this study we show that in PCCL3 cells 1) TSH inhibits Akt activity via cAMP and PKA; 2) Rap1b is required for cAMP inhibition of Akt; and 3) transduction of the cAMP signal into Akt requires activation as well as phosphorylation of Rap1b by PKA.  相似文献   

18.
When Dictyostelium cells starve, they begin secreting a glycoprotein called conditioned medium factor (CMF). When there is a high density of starved cells, as indicated by a high concentration of CMF, the cells begin expressing some genes and aggregate using pulses of cAMP as a chemoattractant. CMF regulates gene expression via a G protein-independent pathway, whereas CMF regulates cAMP signal transduction via a G protein-dependent pathway. To elucidate receptors mediating cell density sensing, we used CMF-Sepharose to isolate membrane proteins that bind CMF. We identified a 50-kDa protein, CMFR1, that is sensitive to trypsin treatment of whole cells. We obtained partial amino acid sequence of CMFR1 and isolated the cDNA encoding it. The derived amino acid sequence has no significant similarity to known proteins and has two or three predicted transmembrane domains. Expression of CMFR1 in insect cells caused an increase in CMF binding. Repression of CMFR1 in Dictyostelium by gene disruption resulted in a approximately 50% decrease of the CMF binding and a loss of CMF-induced G protein-independent gene expression. The G protein-dependent CMF signal transduction pathways appear to be functional in cmfr1 cells, suggesting that cells sense the density-sensing factor CMF using two or more different receptors.  相似文献   

19.
In order to elucidate late regulatory events which may be involved in the onset of S phase in B lymphocytes, we studied the effect of anti-Ig on phosphorylation of soluble proteins at late G1 phase. Stimulation of murine splenic B lymphocytes with anti-Ig and other mitogens for 18 h was found to be associated with a major increase in phosphorylation of an 85 kDa/pI approximately 5.3 cytosolic protein, conversely, stimulation of the cells with non-mitogenic stimuli did not induce the phosphorylation of pp85. The increase in phosphorylation of pp85 could not be detected after 30 min, was barely detectable after 6 h, but was very prominent after 18 h of stimulation with anti-Ig. Thus, the increase in phosphorylation of pp85 is not an early signal but is rather correlated with the late G1 phase. pp85 could not be detected in the nuclei of either control or stimulated cells. Stimulation of B cells for 30 min with forskolin induced the phosphorylation of pp85, while phorbol ester did not have any effect. The phosphorylation of pp85 was induced by the catalytic subunit of cAMP protein kinase. Comparison of the phosphopeptide map of pp85 phosphorylated by anti-Ig in intact cells to the phosphopeptide map phosphorylated by forskolin or by the catalytic subunit of cAMP protein kinase, showed a striking similarity indicating that cAMP protein kinase may be involved in phosphorylation of pp85 in mitogen-stimulated cells. An increase in intracellular cAMP levels at late G1 phase was found in B cells stimulated by mitogens. These results implicate an important role for cAMP-dependent phosphorylation events, specifically the phosphorylation of pp85/pI 5.3, at late G1 phase during the cell cycle.  相似文献   

20.
Binding of cyclic AMP (cAMP) to the cell surface receptor induces a transient activation of guanylate cyclase in Dictyostelium discoideum. A frigid mutant (HC85) which lacks G alpha 2, a guanine nucleotide binding protein, does not respond to cAMP. We found that 2,3-dimercapto-1-propanol (BAL) induced a continuous activation both in the frigid and in its parents. Therefore, the BAL-induced continuous activation of guanylate cyclase is independent of G alpha 2. We also found that cAMP enhanced the BAL-induced continuous activation in the frigid mutant. This result suggests that an unidentified signal transduction mechanism from the cAMP-receptor besides the one involving G alpha 2 plays a role in the enhancement of activation. Lastly, we found that the BAL-induced continuous activation was terminated by cAMP in the parental strain, but not in the frigid mutant. Therefore, the cAMP-induced suppression on the BAL-induced continuous activation is mediated through G alpha 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号