首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of phospholipase A(2)s (PLA(2)s) is of pharmacological and therapeutic interest because these enzymes are involved in several inflammatory diseases. Elaidoylamide is a powerful inhibitor of a neurotoxic PLA(2) from the Vipera ammodytes meridionalis venom. The X-ray structure of the enzyme-inhibitor complex reveals a new mode of Asp49 PLA(2) inhibition by a fatty acid hydrocarbon chain. The structure contains two identical homodimers in the asymmetric unit. In each dimer one subunit is rotated by 180 degrees with respect to the other and the two molecules are oriented head-to-tail. One molecule of elaidoylamide is bound simultaneously to the substrate binding sites of two associated neurotoxic phospholipase A(2) molecules. The inhibitor binds symmetrically to the hydrophobic channels of the two monomers. The structure can be used to design anti-inflammatory drugs.  相似文献   

2.
Cogo JC  Lilla S  Souza GH  Hyslop S  de Nucci G 《Biochimie》2006,88(12):1947-1959
Bothrops snake venoms contain a variety of phospholipases (PLA(2)), some of which are myotoxic. In this work, we used reverse-phase HPLC and mass spectrometry to purify and sequence two PLA(2) from the venom of Bothrops insularis. The two enzymes, designated here as BinTX-I and BinTx-II, were acidic (pI 5.05 and 4.49) Asp49 PLA(2), with molecular masses of 13,975 and 13,788, respectively. The amino acid sequence and molecular mass of BinTX-I were identical to those of a PLA(2) previously isolated from this venom (PA2_BOTIN, SwissProt accession number ) while those of BinTX-II indicated that this was a new enzyme. Multiple sequence alignments with other Bothrops PLA(2) showed that the amino acids His48, Asp49, Tyr52 and Asp99, which are important for enzymatic activity, were fully conserved, as were the 14 cysteine residues involved in disulfide bond formation, in addition to various other residues. A phylogenetic analysis showed that BinTX-I and BinTX-II grouped with other acidic Asp49 PLA(2) from Bothrops venoms, and computer modeling indicated that these enzymes had the characteristic structure of bothropic PLA(2) that consisted of three alpha-helices, a beta-wing, a short helix and a calcium-binding loop. BinTX-I (30 microg/paw) produced mouse hind paw edema that was maximal after 1h compared to after 3h with venom (10 and 100 microg/paw); in both cases, the edema decreased after 6h. BinTX-1 and venom (40 microg/ml each) produced time-dependent neuromuscular blockade in chick biventer cervicis preparations that reached 40% and 95%, respectively, after 120 min. BinTX-I also produced muscle fiber damage and an elevation in CK, as also seen with venom. These results indicate that BinTX-I contributes to the neuromuscular activity and tissue damage caused by B. insularis venom in vitro and in vivo.  相似文献   

3.
Catalytically inactive phospholipase A(2) (PLA(2)) homologues play key roles in the pathogenesis induced by snake envenomation, causing extensive tissue damage via a mechanism still unknown. Although, the amino acid residues directly involved in catalysis are conserved, the substitution of Asp49 by Arg/Lys/Gln or Ser prevents the binding of the essential calcium ion and hence these proteins are incapable of hydrolyzing phospholipids. In this work, the crystal structure of a Lys49-PLA(2) homologue from Bothrops brazili (MTX-II) was solved in two conformational states: (a) native, with Lys49 singly coordinated by the backbone oxygen atom of Val31 and (b) complexed with tetraethylene glycol (TTEG). Interestingly, the TTEG molecule was observed in two different coordination cages depending on the orientation of the nominal calcium-binding loop and of the residue Lys49. These structural observations indicate a direct role for the residue Lys49 in the functioning of a catalytically inactive PLA(2) homologue suggesting a contribution of the active site-like region in the expression of pharmacological effects such as myotoxicity and edema formation. Despite the several crystal structures of Lys49-PLA(2) homologues already determined, their biological assembly remains controversial with two possible conformations. The extended dimer with the hydrophobic channel exposed to the solvent and the compact dimer in which the active site-like region is occluded by the dimeric interface. In the MTX-II crystal packing analysis was found only the extended dimer as a possible stable quaternary arrangement.  相似文献   

4.
The crystal structure of a lysine 49 variant phospholipase A2 (K49 PLA2) has been determined at 2.0-A resolution. This particular phospholipase A2, purified from the venom of the eastern cottonmouth (Agkistrodon piscivorus piscivorus), a North American pit viper, differs significantly from others studied crystallographically because of replacement of the aspartate residue at position 49, whose side chain is important in calcium binding, by lysine. The crystallographic analysis of K49 PLA2 was undertaken to assess the structural ramifications of this substitution, particularly as they affect the binding mechanism of both the calcium cofactor and the phospholipid substrate. The protein crystals are tetragonal, space group P4(1)2(1)2, with unit cell dimensions of a = b = 71.7 (1) and c = 57.8 (3) A. Preliminary phases were obtained by molecular replacement techniques with a search model derived from the refined 2.5-A structure of a rattle-snake venom phospholipase A2 (Brunie, S., Bolin, J., Gewirth, D., and Sigler, P. B. (1985) J. Biol. Chem. 260, 9742-9749). The starting model gave an initial crystallographic RF of 0.526 (RF = sigma parallel to Fo /-/ Fc parallel to /sigma/Fo/). The structure was refined against all data to 2.0-A resolution. The final RF is 0.158. The final model includes 150 discrete water molecules. The K49 PLA2 model is composed primarily of alpha-helices joined by loops, some of which are quite extensive. Although dissimilarities are observed in the loop regions, the helical portions are very similar to those in other known phospholipase A2 structures. The proposed catalytic center (His48, Tyr73, and Asp99) is also structurally conserved. The region in K49 PLA2 corresponding to the calcium-binding site in other phospholipases A2 is occupied by the epsilon-amino group of lysine 49.  相似文献   

5.
A myotoxic Asp49-phospholipase A2 (Asp49-PLA2) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) was crystallized and the molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxic Asp49-PLA2 PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA2S. Despite of this, BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA2 from B. jararacussu) and other Asp49-PLA2S. BthTX-II structure showed a severe distortion of calcium-binding loop leading to displacement of the C-terminal region. Tyr28 side chain, present in this region, is in an opposite position in relation to the same residue in the catalytic activity Asp49-PLA2S, making a hydrogen bond with the atom O delta 2 of the catalytically active Asp49, which should coordinate the calcium. This high distortion may also be confirmed by the inability of BthTX-II to bind Na+ ions at the Ca2+-binding loop, despite of the crystallization to have occurred in the presence of this ion. In contrast, other Asp49-PLA2S which are able to bind Ca2+ ions are also able to bind Na+ ions at this loop. The comparison with other catalytic, non-catalytic and inhibited PLA2S indicates that the BthTX-II is not able to bind calcium ions; consequently, we suggest that its low catalytic function is based on an alternative way compared with other PLA2S.  相似文献   

6.
This is the first structural evidence of alpha-tocopherol (alpha-TP) as a possible candidate against inflammation, as it inhibits phospholipase A2 specifically and effectively. The crystal structure of the complex formed between Vipera russelli phospholipase A2 and alpha-tocopherol has been determined and refined to a resolution of 1.8 A. The structure contains two molecules, A and B, of phospholipase A2 in the asymmetric unit, together with one alpha-tocopherol molecule, which is bound specifically to one of them. The phospholipase A2 molecules interact extensively with each other in the crystalline state. The two molecules were found in a stable association in the solution state as well, thus indicating their inherent tendency to remain together as a structural unit, leading to significant functional implications. In the crystal structure, the most important difference between the conformations of two molecules as a result of their association pertains to the orientation of Trp31. It may be noted that Trp31 is located at the mouth of the hydrophobic channel that forms the binding domain of the enzyme. The values of torsion angles (phi, psi, chi(1) and chi(2)) for both the backbone as well as for the side-chain of Trp31 in molecules A and B are -94 degrees, -30 degrees, -66 degrees, 116 degrees and -128 degrees, 170 degrees, -63 degrees, -81 degrees, respectively. The conformation of Trp31 in molecule A is suitable for binding, while that in B hinders the passage of the ligand to the binding site. Consequently, alpha-tocopherol is able to bind to molecule A only, while the binding site of molecule B contains three water molecules. In the complex, the aromatic moiety of alpha-tocopherol is placed in the large space at the active site of the enzyme, while the long hydrophobic channel in the enzyme is filled by hydrocarbon chain of alpha-tocopherol. The critical interactions between the enzyme and alpha-tocopherol are generated between the hydroxyl group of the six-membered ring of alpha-tocopherol and His48 N(delta1) and Asp49 O(delta1) as characteristic hydrogen bonds. The remaining part of alpha-tocopherol interacts extensively with the residues of the hydrophobic channel of the enzyme, giving rise to a number of hydrophobic interactions, resulting in the formation of a stable complex.  相似文献   

7.
Phospholipase A(2) (PLA(2)) (E. C. 3.1.1.4) is a common enzyme in the two-way cascade mechanism leading to the production of proinflammatory compounds known as eicosanoids. The binding of phospholipase A(2) to the membrane surface and hydrolysis of phospholipids are thought to involve the formation of a hydrophobic channel into which a single substrate molecule diffuses before its cleavage. To regulate the production of proinflammatory compounds, a specific peptide inhibitor Val-Ala-Phe-Arg-Ser (VAFRS) for the group I PLA(2) enzymes has been designed and synthesized. PLA(2) was isolated from Indian cobra (Naja naja sagittifera) venom and purified to homogeneity. The binding studies indicated the K(i) value of 1.02 +/- 0.10 x 10(-8) M. The purified PLA(2) samples and the designed inhibitor VAFRS were cocrystallized. The crystal structure of the complex was determined and refined to 1.9 A resolution. The peptide binds to PLA(2) at the active site and fills the hydrophobic channel completely. However, its placement with respect to the channel is in the opposite direction as compared to those observed in group II PLA(2)'s. Furthermore, the predominant intermolecular interactions involve strong electrostatic interactions between the side chains of peptide Arg and Asp 49 of PLA(2) together with a number of van der Waals interactions with other residues. A good number of observed interactions between the peptide and the protein indicate the significance of a structure-based drug design approach. The novel factor in the present sequence of the peptide is related to the introduction of a positively charged residue at the C-terminal part of the peptide.  相似文献   

8.
The electrophile Ca(2+) is an essential multifunctional co-factor in the phospholipase A(2) mediated hydrolysis of phospholipids. Crystal structures of an acidic phospholipase A(2) from the venom of Bothrops jararacussu have been determined both in the Ca(2+) free and bound states at 0.97 and 1.60 A resolutions, respectively. In the Ca(2+) bound state, the Ca(2+) ion is penta-coordinated by a distorted pyramidal cage of oxygen and nitrogen atoms that is significantly different to that observed in structures of other Group I/II phospholipases A(2). In the absence of Ca(2+), a water molecule occupies the position of the Ca(2+) ion and the side chain of Asp49 and the calcium-binding loop adopts a different conformation.  相似文献   

9.
Chandra V  Jasti J  Kaur P  Srinivasan A  Betzel Ch  Singh TP 《Biochemistry》2002,41(36):10914-10919
This is the first structural observation of a plant product showing high affinity for phospholipase A(2) and regulating the synthesis of arachidonic acid, an intermediate in the production of prostaglandins. The crystal structure of a complex formed between Vipera russelli phospholipase A(2) and a plant alkaloid aristolochic acid has been determined and refined to 1.7 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) in the form of an asymmetric dimer with one molecule of aristolochic acid bound to one of them specifically. The most significant differences introduced by asymmetric molecular association in the structures of two molecules pertain to the conformations of their calcium binding loops, beta-wings, and the C-terminal regions. These differences are associated with a unique conformational behavior of Trp(31). Trp(31) is located at the entrance of the characteristic hydrophobic channel which works as a passage to the active site residues in the enzyme. In the case of molecule A, Trp(31) is found at the interface of two molecules and it forms a number of hydrophobic interactions with the residues of molecule B. Consequently, it is pulled outwardly, leaving the mouth of the hydrophobic channel wide open. On the other hand, Trp(31) in molecule B is exposed to the surface and moves inwardly due to the polar environment on the molecular surface, thus narrowing the opening of the hydrophobic channel. As a result, the aristolochic acid is bound to molecule A only while the binding site of molecule B is empty. It is noteworthy that the most critical interactions in the binding of aristolochic acid are provided by its OH group which forms two hydrogen bonds, one each with His(48) and Asp(49).  相似文献   

10.
Singh N  Jabeen T  Somvanshi RK  Sharma S  Dey S  Singh TP 《Biochemistry》2004,43(46):14577-14583
Phospholipase A(2) (PLA(2); EC 3.1.1.4) is a key enzyme involved in the production of proinflammatory mediators known as eicosanoids. The binding of the substrate to PLA(2) occurs through a well-formed hydrophobic channel. To determine the viability of PLA(2) as a target molecule for the structure-based drug design against inflammation, arthritis, and rheumatism, the crystal structure of the complex of PLA(2) with a known anti-inflammatory compound oxyphenbutazone (OPB), which has been determined at 1.6 A resolution. The structure has been refined to an R factor of 0.209. The structure contains 1 molecule each of PLA(2) and OPB with 2 sulfate ions and 111 water molecules. The binding studies using surface plasmon resonance show that OPB binds to PLA(2) with a dissociation constant of 6.4 x 10(-8) M. The structure determination has revealed the presence of an OPB molecule at the binding site of PLA(2). It fits well in the binding region, thus displaying a high level of complementarity. The structure also indicates that OPB works as a competitive inhibitor. A large number of hydrophobic interactions between the enzyme and the OPB molecule have been observed. The hydrophobic interactions involving residues Tyr(52) and Lys(69) with OPB are particularly noteworthy. Other residues of the hydrophobic channel such as Leu(3), Phe(5), Met(8), Ile(9), and Ala(18) are also interacting extensively with the inhibitor. The crystal structure clearly reveals that the binding of OPB to PLA(2) is specific in nature and possibly suggests that the basis of its anti-inflammatory effects may be due to its binding to PLA(2) as well.  相似文献   

11.
Phospholipases A(2) (PLA(2)) are important constituents of snake venoms, being responsible for several of their toxic actions. Extracts from plants used in folk medicine were screened for inhibition of the enzymatic activity of myotoxin I, a PLA(2) from Bothrops asper. Piper umbellatum and Piper peltatum extracts tested positive, and their fractionation resulted in the isolation of 4-nerolidylcatechol. Its inhibitory effects towards toxic activities of two Bothrops myotoxins, representing catalytically active (Asp49) and catalytically inactive (Lys49) types of group II PLA(2)s, respectively, were characterized. The enzyme activity of B. asper myotoxin I was completely inhibited by 4-nerolidylcatechol at an inhibitor:toxin ratio of 10:1 (wt/wt) with an IC50 of approximately 1mM. In addition, 4-nerolidylcatechol inhibited representatives of groups I and III of PLA(2)s. Its preincubation with Bothrops myotoxins significantly reduced their myotoxic and edema-inducing activities in animal experiments. However, when 4-nerolidylcatechol was administered in situ, immediately after toxin injection, its inhibitory ability was substantially lower or negligible. This might be explained by the rapid action of these toxins in vivo, together with the slow inactivation of PLA(2) activity observed in vitro. Electrophoretic and chromatographic analyses of myotoxins ruled out major changes in protein charge, hydrophobicity, or gross molecular mass being involved in the inhibition mechanism. Mass spectrometry determinations are consistent with the covalent modification of myotoxin by one molecule of 4-nerolidylcatechol. Finally, a novel compound was isolated from both Piper species, sharing the nerolidyl skeleton, but nevertheless not being inhibitory towards the PLA(2)s studied.  相似文献   

12.
Asp49 plays a fundamental role in supporting catalysis by phospholipases A2 by coordinating the calcium ion which aids in the stabilization of the tetrahedral intermediate. In several myotoxins from the venoms of Viperidae snakes, this aspartic acid is substituted by lysine. The loss of calcium binding capacity by these mutants has become regarded as the standard explanation for their greatly reduced or nonexistent phospholipolytic activity. Here we describe the crystal structure of one such Lys49 PLA2, piratoxin-II, in which a fatty acid molecule is observed within the substrate channel. This suggests that such toxins may be active enzymes in which catalysis is interrupted at the stage of substrate release. Comparison of the present structure with other PLA2s, both active and inactive, identifies Lys122 as one of the likely causes of the increased affinity for fatty acid in Lys49 enzymes. Its interaction with the mainchain carbonyl of Cys29 is expected to lead to hyperpolarization of the peptide bond between residues 29 and 30 leading to an increased affinity for the fatty acid headgroup. This strongly bound fatty acid may serve as an anchor to secure the toxin within the membrane thus facilitating its pathological effects.  相似文献   

13.
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.  相似文献   

14.
In order to analyze its structure-function relationships, the complete amino acid sequence of myotoxin II from Atropoides (Bothrops) nummifer from Costa Rica was determined. This toxin is a Lys49-type phospholipase A(2) (PLA(2)) homologue, devoid of catalytic activity, structurally belonging to class IIA. In addition to the Asp49 --> Lys change in the (inactive) catalytic center, substitutions in the calcium-binding loop suggest that its lack of enzymatic activity is due to the loss of ability to bind Ca(2+). The toxin occurs as a homodimer of basic subunits of 121 residues. Its sequence has highest similarity to Lys49 PLA(2)s from Cerrophidion, Trimeresurus, Bothrops and Agkistrodon species, which form a subfamily of proteins that diverged early from Asp49 PLA(2)s present in the same species, as shown by phylogenetic analysis. The tertiary structure of the toxin was modeled, based on the coordinates of Cerrophidion godmani myotoxin II. Its exposed C-terminal region 115-129 shows several differences in comparison to the homologous sequences of other Lys49 PLA(2)s, i.e. from Agkistrodon p. piscivorus and Bothrops asper. Region 115-129 of the latter two proteins has been implicated in myotoxic activity, on the basis of the direct membrane-damaging of their corresponding synthetic peptides. However, peptide 115-129 of A. nummifer myotoxin II did not exert toxicity upon cultured skeletal muscle cells or mature muscle in vivo. Differences in several amino acid residues, either critical for toxicity, or influencing the conformation of free peptide 115-129 from A. nummifer myotoxin II, may account for its lack of direct membrane-damaging properties.  相似文献   

15.
The complete amino acid sequence of the 121 amino acid residues of piratoxin II, a phospholipase A(2) like myotoxin from Bothrops pirajai venom, is reported. PrTX-II is a basic protein with a molecular mass of 13740 Da, a calculated pI of 9.03, but an experimental pI of 8.4 +/- 0.2, showing sequence similarity with other bothropic (90-99%) or non-bothropic ( approximately 80%) Lys49 PLA(2)-like myotoxins. This similarity falls to approximately 70% when this sequence is aligned with that of Asp49 PLA(2). Due to the substitution of Asp49 by Lys49 and alterations in the calcium binding loop structure, as the replacement of Gly32 by Leu32, piratoxin-II shows no PLA(2) activity when assayed on egg yolk. Piratoxin-II showed the same primary structure as piratoxin-I, except that it has Lys116 for Leu116. Despite this slightly higher basicity at the C-terminal region, piratoxin-II was shown to be less myotoxic than piratoxin-I. The change Leu --> Lys induced an alteration of the molecule surface shape and probably of the environment charge high enough to slightly decrease the myotoxic activity. When aligned with B. jararacussu bothropstoxin-I and with B. asper Basp-II, piratoxin-II revealed a single (position 132) and a quintuple (positions 17, 90, 111, 120 and 132) amino acid substitution, respectively, suggesting a common evolutionary origin for these three myotoxins.  相似文献   

16.
Secretory low molecular weight phospholipase A(2)s (PLA(2)s) are believed to be involved in the release of arachidonic acid, a precursor for the biosynthesis of pro-inflammatory eicosanoids. Therefore, the specific inhibitors of these enzymes may act as potent anti-inflammatory agents. Similarly, the compounds with known anti-inflammatory properties should act as specific inhibitors. Two plant compounds, (a) anisic acid (4-methoxy benzoic acid) and (b) atropine (8-methyl-8-azabicyclo oct-3-hydroxy-2-phenylpropanoate), have been used in various inflammatory disorders. Both compounds (a) and (b) have been found to inhibit PLA(2) activity having binding constants of 4.5 x 10(-5) M and 2.1 x 10(-8) M, respectively. A group IIA PLA(2) was isolated and purified from the venom of Daboia russelli pulchella (DRP) and its complexes were made with anisic acid and atropine. The crystal structures of the two complexes (i) and (ii) of PLA(2) with compounds (a) and (b) have been determined at 1.3 and 1.2 A resolutions, respectively. The high-quality observed electron densities for the two compounds allowed the accurate determinations of their atomic positions. The structures revealed that these compounds bound to the enzyme at the substrate - binding cleft and their positions were stabilized by networks of hydrogen bonds and hydrophobic interactions. The most characteristic interactions involving Asp 49 and His 48 were clearly observed in both complexes, although the residues that formed hydrophobic interactions with these compounds were not identical because their positions did not exactly superimpose in the large substrate-binding hydrophobic channel. Owing to a relatively small size, the structure of anisic acid did not alter upon binding to PLA(2), while that of atropine changed significantly when compared with its native crystal structure. The conformation of the protein also did not show notable changes upon the bindings of these ligands. The mode of binding of anisic acid to the present group II PLA(2) is almost identical to its binding with bovine pancreatic PLA(2) of group I. On the other hand, the binding of atropine to PLA(2) is similar to that of another plant alkaloid aristolochic acid.  相似文献   

17.
Wei JF  Li T  Wei XL  Sun QY  Yang FM  Chen QY  Wang WY  Xiong YL  He SH 《Biochimie》2006,88(10):1331-1342
Group IIA phospholipase A(2) (PLA(2)) are major components in Viperidae/Crotalidae venom. In the present study, a novel PLA(2) named promutoxin with Arg at the site 49 has been purified from the venom of Protobothrops mucrosquamatus by chromatography. It consists of 122 amino acid residues with a molecular mass of 13,656 Da assessed by MALDI-TOF. It has the structural features of snake venom group IIA PLA(2)s, but has no PLA(2) enzymatic activity. Promutoxin shows higher amino acid sequence identity to the K49 PLA(2)s (72-95%) than to D49 PLA(2)s (52-58%). Promutoxin exhibits potent myotoxicity in the animal model with as little as 1 microg of promutoxin causing myonecrosis and myoedema in the gastrocnemius muscle of mice. Promutoxin is also able to stimulate the release of IL-12, TNFalpha, IL-6 and IL-1beta from human monocytes, and induce IL-2, TNFalpha and IL-6 release from T cells, indicating that this snake venom group IIA PLA(2) is actively involved in the inflammatory process in man caused by snake venom poisoning.  相似文献   

18.
CYP199A2, a cytochrome P450 enzyme from Rhodopseudomonas palustris, oxidatively demethylates 4-methoxybenzoic acid to 4-hydroxybenzoic acid. 4-Ethylbenzoic acid is converted to a mixture of predominantly 4-(1-hydroxyethyl)-benzoic acid and 4-vinylbenzoic acid, the latter being a rare example of CC bond dehydrogenation of an unbranched alkyl group. The crystal structure of CYP199A2 has been determined at 2.0-Å resolution. The enzyme has the common P450 fold, but the B′ helix is missing and the G helix is broken into two (G and G′) by a kink at Pro204. Helices G and G′ are bent back from the extended BC loop and the I helix to open up a clearly defined substrate access channel. Channel openings in this region of the P450 fold are rare in bacterial P450 enzymes but more common in eukaryotic P450 enzymes. The channel is hydrophobic except for the basic residue Arg246 at the entrance, which probably plays a role in the specificity of this enzyme for charged benzoates over neutral phenols and benzenes. The substrate binding pocket is hydrophobic, with Ser97 and Ser247 being the only polar residues. Computer docking of 4-ethylbenzoic acid into the active site suggests that the substrate carboxylate oxygens interact with Ser97 and Ser247, and the β-methyl group is located over the heme iron by Phe185, the side chain of which is only 6.35 Å above the iron in the native structure. This binding orientation is consistent with the observed product profile of exclusive attack at the para substituent. Putidaredoxin of the CYP101A1 system from Pseudomonas putida supports substrate oxidation by CYP199A2 at ∼6% of the activity of the physiological ferredoxin. Comparison of the heme proximal faces of CYP199A2 and CYP101A1 suggests that charge reversal surrounding the surface residue Leu369 in CYP199A2 may be a significant factor in this low cross-activity.  相似文献   

19.
Machiah DK  Gowda TV 《Biochimie》2006,88(6):701-710
A post-synaptic neurotoxic phospholipase A(2) (PLA(2)) has been purified from Indian cobra Naja naja venom. It was associated with a peptide in the venom. The association was disrupted using 8 M urea. It is denoted to be a basic protein by its behavior on both ion exchange chromatography and electrophoresis. It is toxic to mice, LD(50) 1.9 mg/kg body weight (ip). It is proved to be post-synaptic PLA(2) by chymographic experiment using frog nerve-muscle preparation. A glycoprotein, (WSG) was isolated from a folk medicinal plant Withania somnifera. The WSG inhibited the phospholipase A(2) activity of NN-XIa-PLA(2,) isolated from the cobra venom, completely at a mole-to-mole ratio of 1:2 (NN-XIa-PLA(2): WSG) but failed to neutralize the toxicity of the molecule. However, it reduced the toxicity as well as prolonged the death time of the experimental mice approximately 10 times when compared to venom alone. The WSG also inhibited several other PLA(2) isoforms from the venom to varying extent. The interaction of the WSG with the PLA(2) is confirmed by fluorescence quenching and gel-permeation chromatography. Chemical modification of the active histidine residue of PLA(2) using p-brophenacyl bromide resulted in the loss of both catalytic activity as well as neurotoxicity of the molecule. These findings suggest that the venom PLA(2) has multiple sites on it; perhaps some of them are overlapping. Application of the plant extract on snakebite wound confirms the medicinal value associated with the plant.  相似文献   

20.
Chitinases are known to hydrolyze chitin polymers into smaller chitooligosaccharides. Chitinase from bacterium Serratia proteamaculans (SpChiD) is found to exhibit both hydrolysis and transglycosylation activities. SpChiD belongs to family 18 of glycosyl hydrolases (GH-18). The recombinant SpChiD was crystallized and its three-dimensional structure was determined at 1.49 Å resolution. The structure was refined to an R-factor of 16.2%. SpChiD consists of 406 amino acid residues. The polypeptide chain of SpChiD adopts a (β/α)8 triosephosphate isomerase (TIM) barrel structure. SpChiD contains three acidic residues, Asp149, Asp151 and Glu153 as part of its catalytic scheme. While both Asp149 and Glu153 adopt single conformations, Asp151 is observed in two conformations. The substrate binding cleft is partially obstructed by a protruding loop, Asn30 - Asp42 causing a considerable reduction in the number of available subsites in the substrate binding site. The positioning of loop, Asn30 - Asp42 appears to be responsible for the transglycosylation activity. The structure determination indicated the presence of sulfone Met89 (SMet89). The sulfone methionine residue is located on the surface of the protein at a site where extra domain is attached in other chitinases. This is the first structure of a single domain chitinase with hydrolytic and transglycosylation activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号