首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH dependence of the spectra and of the oxidation-reduction potential of three cytochromes c2, from Rhodopseudomonas capsulata, Rhodopseudomonas sphaeroides and Rhodomicrobium vannielii, were studied. A single alkaline pK was observed for the spectral changes in all three ferricytochromes. In Rps. capsulata cytochrome c2 this spectroscopic pK corresponds to the pK observed in the dependence of oxidation-reduction potential on pH. For the other two cytochromes the oxidation-reduction potential showed a complex dependency on pH which can be fitted to theoretical curves involving three ionizations. The third ionization corresponds to the ionization observed in the spectroscopic studies but the first two occur without changes in the visible spectra. The possible structural bases for these ionizations are discussed.  相似文献   

2.
Cytochrome c-557 from Crithidia oncopelti and cytochrome c-558 from Euglena gracilis are mitochondrial cytochromes c that have an atypical haem-binding site. It was of interest to know whether the loss of one thioether bond affected the physicochemical properties of these cytochromes. The thermodynamic parameters of the redox potential were measured. The reaction with imidazole, the kinetics and thermodynamics of the alkaline isomerization and the effect of heating on the visible spectrum are described for the ferricytochromes. The kinetics of the loss of cyanide, the spectral changes occurring on reduction with dithionite at alkaline pH values and the reactivity with CO are described for the ferrocytochromes. In many respects the cytochromes of the two protozoans are very similar to the cytochromes of horse and yeast. The ferricytochromes do, however, undergo a reversible transition to high-spin species on heating, which may be due to the more flexible attachment of the prosthetic group. Similarly the alkaline isomers of cytochromes c-557 and c-558 give rise to high-spin proteins above pH 11. The alkaline isomerization of cytochrome c-558, involves a pKobs. of 10 and kinetics which do not obey the model of Davis et al. [(1974) J. Biol. Chem. 249, 2624-2632] for horse cytochrome c. It is proposed that a model involving two ionizations, followed by a conformation change, may fit the data. Both cytochromes c-557 and c-558 combine slowly with CO at neutral pH values.  相似文献   

3.
The pH dependence of the spectra and of the oxidation-reduction potential of three cytochromes c2, from Rhodopseudomonas capsulata, Rhodopseudomonas sphaeroides and Rhodomicrobium vannielii, were studied. A single alkaline pK was observed for the spectral changes in all three ferricytochromes. In Rps. capsulata cytochrome c2 this spectroscopic pK corresponds to the pK observed in the dependence of oxidation-reduction potential on pH. For the other two cytochromes the oxidation-reduction potential showed a complex dependency on pH which can be fitted to theoretical curves involving three ionizations. The third ionization corresponds to the ionization observed in the spectroscopic studies but the first two occur without changes in the visible spectra.The possible structural bases for these ionizations are discussed.  相似文献   

4.
Bandi S  Bowler BE 《Biochemistry》2011,50(46):10027-10040
The alkaline transition of cytochrome c involves substitution of the Met80 heme ligand of the native state with a lysine ligand from a surface Ω-loop (residues 70 to 85). The standard mechanism for the alkaline transition involves a rapid deprotonation equilibrium followed by the conformational change. However, recent work implicates multiple ionization equilibria and stable intermediates. In previous work, we showed that the kinetics of formation of a His73-heme alkaline conformer of yeast iso-1-cytochrome c requires ionization of the histidine ligand (pK(HL) ~ 6.5). Furthermore, the forward and backward rate constants, k(f) and k(b), respectively, for the conformational change are modulated by two auxiliary ionizations (pK(H1) ~ 5.5, and pK(H2) ~ 9). A possible candidate for pK(H1) is His26, which has a strongly shifted pK(a) in native cytochrome c. Here, we use the AcH73 iso-1-cytochrome c variant, which contains an H26N mutation, to test this hypothesis. pH jump experiments on the AcH73 variant show no change in k(obs) for the His73-heme alkaline transition from pH 5 to 8, suggesting that pK(H1) has disappeared. However, direct measurement of k(f) and k(b) using conformationally gated electron transfer methods shows that the pH independence of k(obs) results from coincidental compensation between the decrease in k(b) due to pK(H1) and the increase in k(f) due to pK(HL). Thus, His26 is not the source of pK(H1). The data also show that the H26N mutation enhances the dynamics of this conformational transition from pH 5 to 10, likely as a result of destabilization of the protein.  相似文献   

5.
Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E0') at pH 7 and 25 degrees C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid-base equilibria have been determined for the oxidized proteins with apparent pKa values of 2.5, 4.8, and 8.3-8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include: (i) less negative reduction enthalpies and entropies (Delta S0'rc and Delta H0'rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 degrees C largely compensate to produce E degrees ' values very similar to those of the mammalian proteins; (ii) the N1 --> N2 transition that occurs at a lower temperature (e.g., 30-35 degrees C vs 50 degrees C at pH 7. 5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pKa for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 degrees C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c2.  相似文献   

6.
P D Barker  M R Mauk  A G Mauk 《Biochemistry》1991,30(9):2377-2383
The proton titration curves of yeast iso-1-ferricytochrome c and selected point mutants of this protein have been determined between pH 3 and 11 at 10 and 25 degrees C with a computer-controlled titration system. Initial titration of the wild-type protein to acidic pH followed by subsequent titrations to alkaline and then acidic pH demonstrates hysteresis, with one more group (28.7) titrating between pH 11 and 3 than originally titrated (27.7) between pH 3 and 11. Initial titration to alkaline pH, however, resulted in observation of the same number of groups in both directions of titration (28.7 vs 28.6). At 10 degrees C, 7.5 fewer groups were found to titrate over the same range of pH. Titration curves obtained for six cytochrome c mutants modified at Arg-38, Phe-82, Tyr-48, and Tyr-67 were analyzed by subtraction of the corresponding titration curve for the wild-type protein to produce difference titration curves. In most cases, the effects of these mutations as revealed in the difference titration curves could be accounted for as either the result of introduction of an additional group titrating within this pH range, the result of a change in the pK of a titrating residue, and/or the result of a change in the pK for either the first acidic or the first alkaline protein conformational transition. In addition to demonstration of the electrostatic consequences of the mutations in cytochrome c studied here, this study establishes the general usefulness of precise proton titration curve analysis in the characterization of variant proteins produced through recombinant genetic techniques.  相似文献   

7.
The pH dependence of the oxidation-state marker line of hemoproteins is investigated in cytochrome c peroxidase with Raman difference spectroscopy. The frequency is sensitive to ionization of a group on the protein that regulates catalytic activity of the resting ferriheme enzyme. The oxidation-state marker line shows a transition with pK of 5.5 in good agreement with other spectroscopic measurements and kinetic measurements of binding of peroxide, and other ligands to the native enzyme. The shift of 0.8 cm-1 to higher frequency at pH 4.5 relative to the pH 6.4 value is interpreted in terms of a substantial decrease in pi-electron density in the porphyrin ring. Charge density in the pi-system is highest at maximal activity, as would be expected if donor-acceptor interactions with residues of the protein stabilize the oxidized Fe(IV) reaction intermediate. Evidence of additional heme-linked ionizations with pK values near 7.5 is found; this alkaline transition involves deprotonation of several groups of the protein, conversion of iron from high to low spin, and, possibly, denaturation of the protein.  相似文献   

8.
The thermodynamic parameters of the alkaline transition for oxidized native yeast iso-1 cytochrome c and Rhodopseudomonas palustris cytochrome c(2) (cytc(2)) have been determined through direct electrochemistry experiments carried out at variable pH and temperature and compared to those for horse and beef heart cytochromes c. We have found that both transition enthalpy and entropy are remarkably species dependent, following the order R. palustris cytc(2) > beef (horse) heart cytc>yeast iso-1 cytc. Considering the high homology at the heme-protein interface in the native species, this variability is likely to be mainly determined by differences in the structural and solvation properties and the relative abundance of the various alkaline conformers. Notably, changes in transition enthalpy and entropy among these cytochromes c are compensative and result in small variations in the free energy change of the process (which amounts approximately to +50 kJ mol(-1)) and consequently in the apparent pK(a) value. This compensation indicates that solvent reorganization effects play an important role in the thermodynamics of the transition. This mechanism is functional to ensure a relatively high pK(a) value for the alkaline transition, which is needed to preserve His,Met ligation to the heme iron in cytochrome c at physiological pH and temperature, hence the E(o) value required for the biological function.  相似文献   

9.
Correlation between the flexibility of the Met80 loop (residues 75-86) and the local stabilities of native ferricytochromes c from horse, bovine, and tuna was examined. By monitoring the heme bands versus temperature, absorption changes associated with altered ligation in the alkaline isomers were observed. In addition, the intensity of the 695-nm absorption band, which is associated with the heme-crevice stability, decreased with increasing temperature and exhibited biphasic temperature dependence, with transition temperatures (Tc) at 35 degrees C in tuna c, 55 degrees C in horse c, and 58 C in bovine c. Since the heme crevice plays a key role in the thermal stabilities of cytochromes c, their susceptibility to proteolytic attack was examined as a function of temperature. Proteolytic digestion, which requires local conformational instability, revealed that the local stabilities of the cytochromes follow the order: bovine > horse > tuna, and increased digestion occurred at temperatures close to the 695-nm Tc for each protein. This is consistent with the actual substitution of the Met80 ligand above the 695-nm Tc, which is reflected in the thermodynamic parameters for the two phases. Also, tuna c, unlike horse and bovine c, exhibits different 695-nm (35 degrees C) and Soret (approximately 46 degrees C) Tc values, but its local stability is controlled by the transition detected at 695 nm. The combined spectroscopic and proteolysis results clearly indicate that the flexibility of the Met80 loop determines the local stability of cytochromes c.  相似文献   

10.
The 20-kDa di-heme cytochrome c (4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 was cloned and expressed in Escherichia coli and investigated through UV-vis and (1)H NMR spectroscopies and protein voltammetry. The model structure was computed using the X-ray structure of Pseudomonas stutzeri cytochrome c (4) as a template. The protein shows unprecedented properties within the cytochrome c (4) family, including (1) an almost nonpolar surface charge distribution, (2) the absence of high-spin heme Fe(III) states, indicative of a thermodynamically stable and kinetically inert axial heme His,Met coordination, and (3) identical E degrees ' values for the two heme centers (+0.322 V vs the standard hydrogen elecrode). At pH extremes, both heme groups undergo the "acid" and "alkaline" conformational transitions typical of class I cytochromes c, involving ligand-exchange equilibria, whereas at intermediate pH values their electronic properties are sensitive to several residue ionizations.  相似文献   

11.
Redox protein complexes between type I and type II tetraheme cytochromes c(3) from Desulfovibrio vulgaris Hildenborough are here analyzed using theoretical methodologies. Various complexes were generated using rigid-body docking techniques, and the two lowest energy complexes (1 and 2) were relaxed using molecular dynamics simulations with explicit solvent and subjected to further characterization. Complex 1 corresponds to an interaction between hemes I from both cytochromes c(3). Complex 2 corresponds to an interaction between the heme IV from type I and the heme I from type II cytochrome c(3). Binding free energy calculations using molecular mechanics, Poisson-Boltzmann, and surface accessibility methods show that complex 2 is more stable than complex 1. Thermodynamic calculations on complex 2 show that complex formation induces changes in the reduction potential of both cytochromes c(3), but the changes are larger in the type I cytochrome c(3) (the largest one occurring on heme IV, of approximately 80 mV). These changes are sufficient to invert the global titration curves of both cytochromes, generating directionally in electron transfer from type I to type II cytochrome c(3), a phenomenon of obvious thermodynamic origin and consequences, but also with kinetic implications. The existence of processes like this occurring at complex formation may constitute a natural design of efficient redox chains.  相似文献   

12.
The relationship between pH-induced conformational changes in iso-2 cytochrome c from Saccharomyces cerevisiae and the guanidine hydrochloride induced unfolding transition has been investigated. Comparison of equilibrium unfolding transitions at acid, neutral, and alkaline pH shows that stability toward guanidine hydrochloride denaturation is decreased at low pH but increased at high pH. In the acid range the decrease in stability of the folded protein is correlated with changes in the visible spectrum, which indicate conversion to a high-spin heme state--probably involving the loss of heme ligands. The increase in stability at high pH is correlated with a pH-induced conformational change with an apparent pK near 8. As in the case of homologous cytochromes c, this transition involves the loss of the 695-nm absorbance band with only minor changes in other optical parameters. For the unfolded protein, optical spectroscopy and 1H NMR spectroscopy are consistent with a random coil unfolded state in which amino acid side chains serve as (low-spin) heme ligands at both neutral and alkaline pH. However, the paramagnetic region of the proton NMR spectrum of unfolded iso-2 cytochrome c indicates a change in the (low-spin) heme-ligand complex at high pH. Apparently, the folded and unfolded states of the (inactive) alkaline form differ from the corresponding states of the less stable native protein.  相似文献   

13.
Onufriev A  Case DA  Ullmann GM 《Biochemistry》2001,40(12):3413-3419
When individual titratable sites in a molecule interact with each other, their pH titration can be considerably more complex than that of an independent site described by the classical Henderson-Hasselbalch equation. We propose a novel framework that decomposes any complex titration behavior into simple standard components. The approach maps the set of N interacting sites in the molecule onto a set of N independent, noninteracting quasi-sites, each characterized by a pK'(a) value. The titration curve of an individual site in the molecule is a weighted sum of Henderson-Hasselbalch curves corresponding to the quasi-sites. The total protonation curve is the unweighted sum of these Henderson-Hasselbalch curves. We show that pK'(a) values correspond to deprotonation constants available from methods that can be used to assess total proton uptake or release, and establish their connection to protonation curves of individual residues obtained by NMR or infrared spectroscopy. The new framework is tested on a small molecule diethylenetriaminepentaacetate (DTPA) exhibiting nonmonotonic titration curves, where it gives an excellent fit to experimental data. We demonstrate that the titration curve of a site in a group of interacting sites can be accurately reconstructed, if titration curves of the other sites are known. The application of the new framework to the protein rubredoxin demonstrates its usefulness in calculating and interpreting complicated titration curves.  相似文献   

14.
NMR-monitored pH titration curves of proteins provide a rich source of structural and electrostatic information. Although relatively straightforward to measure, interpreting pH-dependent chemical shift changes to obtain site-specific acid dissociation constants (pK (A) values) is challenging. In order to analyze the biphasic titrations exhibited by the side chain (13)C(γ) nuclei of the nucleophilic Glu78 and general acid/base Glu172 in Bacillus circulans xylanase, we have revisited the formalism for the ionization equilibria of two coupled acidic residues. In general, fitting NMR-monitored pH titration curves for such a system will only yield the two macroscopic pK (A) values that reflect the combined effects of both deprotonation reactions. However, through the use of mutations complemented with ionic strength-dependent measurements, we are able to extract the four microscopic pK (Ai) values governing the branched acid/base equilibria of Glu78 and Glu172 in BcX. These data, confirmed through theoretical calculations, help explain the pH-dependent mechanism of this model GH11 xylanase by demonstrating that the kinetically determined pK (A) values and hence catalytic roles of these two residues result from their electrostatic coupling.  相似文献   

15.
P C Weber 《Biochemistry》1982,21(21):5116-5119
The cytochromes c' are a class of heme proteins whose native spectroscopic properties have been suggested to represent a quantum mechanical admixture of intermediate-(S = 3/2) and high-(S = 5/2) spin states. Here features of the cytochrome c' heme environment, as revealed by X-ray crystallographic studies of the dimeric cytochrome c' from Rhodospirillum molischianum, are related to the observed spectroscopic properties. The environment of the heme group in cytochrome c' supports the existence of the admixed spin state at neutral pH and suggests that pH-dependent transition to a pure high-spin state at alkaline pH involves deprotonation of the histidine axial ligand to the heme iron.  相似文献   

16.
This is a thorough biochemical, spectroscopic, electrochemical, and structural study of a cytochrome c(6) isolated from the filamentous green alga Cladophora glomerata. The protein sequence, elucidated using chemical and mass spectrometric techniques, features 91 amino acids and the characteristic CXXCH heme-binding motif found in c-type cytochromes. The protein is monomeric in both oxidation forms, thereby putting in question a functional role for protein dimerization. Direct electrochemical measurements established, for the first time, the kinetic and thermodynamic data for the redox process in a cytochrome c(6). In particular, the quasi-reversible and diffusion-controlled redox process is accompanied by negative enthalpy and entropy changes, resulting in an E degrees ' value of 0.352 V at 298 K. The pH-dependent properties of the oxidized protein, detected by UV-visible, NMR, and direct cyclic voltammetry, indicate the presence of two acid-base equilibria occurring in the acidic (pK(a) = 4.5) and alkaline regions (pK(a) = 9.0). NMR and electronic spectra allowed the assignment of these equilibria to deprotonation of heme propionate-7 and to replacement of the axial methionine with another ligand, respectively. The 1.3 A resolution X-ray structure of the oxidized protein, revealing a fold typical for class I cytochromes, suggests that the conserved Lys60 replaces the axial methionine at pH >9. The heme solvent accessibility is low, and no water molecules were found in the vicinity of the axial ligands of the heme Fe. A structure-based alignment of cytochromes c(6), and the direct comparison of their structures, indicate a substantial degree of identity between the tertiary structures and suggest patches involved in protein-protein interaction. In particular, the surface electrostatic potential of cytochromes c(6) features a hydrophobic region around the heme cofactor, and a backside surface rich in negative charges.  相似文献   

17.
Ionization properties of the tyrosyl groups of bovine plasma albumin in various conformational states—the native state (N), the two acid states (F and E), and the state (B) stable at slightly alkaline pH—were studied by means of a stopped-flow-pH-jump technique. The technique allows us to obtain the tyrosyl titration curve in a conformational state that is unstable in the pH region of the titration. The pH jumps from the N and B states to various alkaline pH's, where the tyrosines ionize to bring about a time-dependent increase in absorption at 296 nm, indicating that a number of the tyrosines buried initially become susceptible to ionization as a result of the alkaline transition occurring above pH 10.8. Extrapolation of the observed absorption change to zero time gives a spectrophotometric titration curve in the initial conformational state. Only 30–401% of the 19 tyrosines of the protein can ionize both in the N and the B state at pH 12. The pH jumps from the F and E states, on the other hand, give a decrease in absorption between pH 9 and 11.7, indicating that the tyrosyl groups initially exposed are remarked by refolding after the pH jumps, and the zero-time titration curves show that essentially all the tyrosyl groups ionize normally in these acid states. The results are discussed in relation to the known results of the tyrosyl exposure of the protein measured by other techniques, and the consistency among them demonstrates the effectiveness of the pH-jump titration method. Hydrogen bonding between the abnormal tyrosyl and carboxylate groups as a mechanism to stabilize native albumin is suggested from characteristics of the alkaline transition, which also involves the exposure of the tyrosyl groups, and from the tyrosyl titration curves in the native and acid states.  相似文献   

18.
The protein stabilities of wild type and four site-directed mutants of Rhodobacter capsulatus cytochrome c2 have been characterized. The integrity of the cytochrome c2 iron-sulfur environment was ascertained by titration of the 696-nm absorbance band with alkali, and the conformational stability was determined by titration of the 220-nm circular dichroism signal with Gdn-HCl. Analysis of the alkaline transition pK value of K12D (lysine-12 substituted by aspartate) indicated that the K12D iron-sulfur environment was destabilized by 0.6 kcal/mol relative to the wild-type cytochrome c2 at low ionic strength. In contrast, the alkaline transition pK values of K14E (lysine-14 substituted by glutamate), K32E (lysine-32 substituted by glutamate), and K14E/K32E (lysines-14 and -32 substituted by glutamates) were indistinguishable from the wild type, indicating that these substitutions have no effect on the stability of the iron-sulfur environment. Gdn-HCl denaturation of K12D and K14E indicated that both these mutations decreased conformational stability by 1.3 kcal/mol. In contrast, mutant K32E exhibited a small stabilizing effect of 0.2 kcal/mol. Gdn-HCl denaturation of K14E/K32E indicated that this mutation decreased conformational stability by 1.3 kcal/mol, which is consistent with the additive effects of the single charge mutations at positions 14 and 32. The conformational instability of mutants possessing negative charges at position 12 or 14 is best explained by their positioning at the carboxy-terminal region of the amino-terminal alpha-helix of R. capsulatus cytochrome c2. Accordingly, introduction of negatively charged groups into this region appears to destabilize cytochrome c2 through energetically unfavorable interactions with the dipole of the amino-terminal helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Resonance Raman spectra were measured for various C-type cytochromes (mammalian cytochrome c, bacterial cytochrome c3, algal photosynthetic cytochrome f, and alkylated cytochrome c) and a B-type cytochrome (cytochrome b5) in their reduced and oxidized states. (1) For ferrous alkylated cytochrome c, a Raman line sensitive to the replacement of an axial ligand of the heme iron uas found around 1540 cm=1. This ligand-sensitive Raman line indicated the transition from acidic (1545 cm-1) to alkaline (1533 cm-1) forms with pK 7.9. The pH dependence of the Raman spectrum corresponded well to that of the optical absorption spectra. (2) For ferrous cytochrome f, the ligand-sensitive Raman line was found at the same frequency as cytochrome c (1545 cm-1). Accordingly two axial ligands are likely to be histidine and methionine as in cytochrome c. (3) For ferrous cytochrome c3, the frequency of the ligand-sensitive Raman line was between those of cytochrome c and cytochrome b5. Since two axial ligands of the heme iron in cytochrome c3 might be histidines. However, a combination of histidine and methionine as a possible set of two axial ligands was not completely excluded for one or two of the four hemes. (4) In ferrous cytochrome b5, two weak Raman lines appeared at 1302 and 1338 cm-1 instead of the strongest band at 1313 cm-1 of C-type ferrous cytochromes. This suggests the practical use of these bands for the identification of types of cytochromes. The difference in frequency and intensity between B- and C-types of hemes implies that the low effective symmetry of the heme in ferrous cytochrome c is due to vibrational coupling of ring modes with peripheral substituents rather than geometrical disortion of heme.  相似文献   

20.
Fe(IV)=O resonance Raman stretching vibrations were recently identified by this laboratory for horseradish peroxidase compound II and ferryl myoglobin. In the present report it is shown that Fe(IV)=O stretching frequency for horseradish peroxidase compound II will switch between two values depending on pH, with pKa values corresponding to the previously reported compound II heme-linked ionizations of pKa = 6.9 for isoenzyme A-2 and pKa = 8.5 for isoenzyme C. Similar pH-dependent shifts of the Fe(IV)=O frequency of ferryl myoglobin were not detected above pH 6. The Fe(IV)=O stretching frequencies of compound II of the horseradish peroxidase isoenzymes at pH values above the transition points were at a high value approaching the Fe(IV)=O stretching frequency of ferryl myoglobin. Below the transition points the horseradish peroxidase frequencies were found to be 10 cm-1 lower. Frequencies of the Fe(IV)=O stretching vibrations of horseradish peroxidase compound II for one set of isoenzymes were found to be sensitive to deuterium exchange below the transition point but not above. These results were interpreted to be indicative of an alkaline deprotonation of a distal amino acid group, probably histidine, which is hydrogen bonded to the oxyferryl group below the transition point. Deprotonation of this group at pH values above the pKa disrupts hydrogen bonding, raising the Fe(IV)=O stretching frequency, and is proposed to account for the lowering of compound II reactivity at alkaline pH. The high value of the Fe(IV)=O vibration of compound II above the transition point appears to be identical in frequency to what is believed to be the Fe(IV)=O vibration of compound X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号