首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T J Krieger  V Y Hook 《Biochemistry》1992,31(17):4223-4231
Purification and potential tachykinin and enkephalin precursor cleaving enzymes from bovine chromaffin granules was undertaken using as substrates the model precursors 35S-(Met)-beta-preprotachykinin [35S-(Met)-beta-PPT] and 35S-(Met)-preproenkephalin [35S-(Met)-PPE]. Purification by concanavalin A-Sepharose, Sephacryl S200, and chromatofocusing resulted in a chromaffin granule aspartyl protease (CGAP) that preferred the tachykinin over the enkephalin precursor. CGAP was composed of 47-, 30-, and 16.5-kDa polypeptides migrating as a single band in a nondenaturing electrophoretic gel system, and coeluting with an apparent molecular mass of 45-55 kDa by size-exclusion chromatography. These results suggest that two forms exist: a single 47-kDa polypeptide and a complex of 30 + 16.5-kDa-associated subunits. CGAP was optimally active at pH 5.0-5.5, indicating that it would be active within the acidic intragranular environment. Cleavage at basic residues was suggested by HPLC and HVE identification of 35S-(Met)-NKA-Gly-Lys as the major acid-soluble product generated from 35S-(Met)-beta-PPT. Neuropeptide K was cleaved at a Lys-Arg basic residue site, as determined by identification of proteolytic products by microsequencing and amino acid composition analyses. Structural studies showed that the three CGAP polypeptides were similar to bovine cathepsin D in NH2-terminal sequences and amino acid compositions, indicating that CGAP appears to be a cathepsin D-related protease or cathepsin D itself. The 47- and 16.5-kDa polypeptides of CGAP possessed identical NH2-terminal sequences, suggesting that the 16.5-kDa polypeptide may be derived from the 47-kDa form by proteolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
The cysteine protease known as "prohormone thiol protease" (PTP) has been identified as a major proenkephalin processing enzyme in secretory vesicles of adrenal medulla (known as chromaffin granules). This study provides the first demonstration that PTP exists as a multicatalytic cysteine protease complex that can be activated by endogenous glutathione present in chromaffin granules. The high molecular mass nature of PTP, of approximately 185 kDa, was demonstrated by elution of a single peak of 35S-enkephalin precursor cleaving activity by Sephacryl S200 gel filtration chromatography and by a single band of 35S-enkephalin precursor cleaving activity detected on radiozymogram gels under native buffer conditions. Importantly, when 0.1% SDS was included in radiozymogram gels, PTP activity was resolved into three bands of proteolytic activity with apparent molecular masses of 88, 81, and 61 kDa. These activities were all cysteine proteases, since they were inhibited by the cysteine protease inhibitor E-64c but not by pepstatin A or EDTA that inhibit aspartyl protease and metalloprotease, respectively. Purification of native PTP by preparative gel electrophoresis indicated that PTP was composed of four polypeptides of 66, 60, 33, and 29 kDa detected on SDS-PAGE gels. These four protein subunits accounted for the three catalytic activities of PTP, as demonstrated on 35S-enkephalin precursor radiozymogram gels. Results also indicated that the electrophoretic mobilities of the four subunits differed under reducing compared to nonreducing conditions. The multicatalytic activities of the PTP complex all require reducing conditions for activity, which can be provided by endogenous reduced glutathione in chromaffin granules. These novel findings provide the first evidence for a role of a multicatalytic cysteine protease complex, PTP, in chromaffin granules that may be involved in the proteolytic processing of proenkephalin and perhaps other precursors into active neuropeptides.  相似文献   

4.
Proteolytic processing enzymes are required to convert the enkephalin precursor to active opioid peptides. In this study, a novel 33-kDa thiol protease that cleaves complete precursor in the form of [35S]methionine preproenkephalin was purified from bovine adrenal medullary chromaffin granules. Chromatography on concanavalin A-Sepharose and Sephacryl S-200, chromatofocusing, and chromatography on thiopropyl-Sepharose resulted in an 88,000-fold purification with a recovery of 35% of enzyme activity. The thiol protease is a glycoprotein with a pI of 6.0. It cleaves [35S]methionine preproenkephalin with a pH optimum of 5.5, indicating that it is functional at the intragranular pH of 5.5-6.0. Interestingly, production of trichloroacetic acid-soluble products was optimal at pH 4.0, suggesting that processing of initial precursor and intermediates may require slightly different pH conditions. The protease requires dithiothreitol for activity and is inhibited by the thiol protease inhibitors iodoacetate, p-hydroxymercuribenzoate, mercuric chloride, and cystatin. These properties distinguish it from other thiol proteases (cathepsins B, H, L, N, and S), indicating that a unique thiol protease has been identified. The enzyme converted [35S]cysteine preproenkephalin (possessing [35S]cysteine residues specifically within the precursor's NH2-terminal segment) to 22.1-, 21.6-, 17.7-, 17.3-, and 15.0-kDa intermediates that contain the precursor's NH2-terminal segment; proenkephalin in vivo is converted to similar intermediates. The enzyme cleaves peptide F at Lys-Arg and Lys-Lys dibasic amino acid sites to generate methionine enkephalin and intermediates. The appropriate vesicular localization, pH optimum, proteolytic products, and cleavage site specificity suggest that this thiol protease may be involved in enkephalin precursor processing. Most interestingly, [35S]methionine beta-preprotachykinin, a precursor of substance P, is minimally cleaved, suggesting that the thiol protease may possess some selectivity for the enkephalin precursor.  相似文献   

5.
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.  相似文献   

6.
Serpins represent a diverse class of endogenous protease inhibitors that regulate important biological functions. In consideration of the importance of regulated proteolysis within secretory vesicles for the production of peptide hormones and neurotransmitters, this study revealed the molecular identity of a novel serpin, endopin 1, that is localized to neurosecretory vesicles of neuropeptide-containing chromaffin cells (chromaffin granules). Endopin 1 of 68-70 kDa was present within isolated chromaffin granules. Stimulated cosecretion of endopin 1 with chromaffin granule components, [Met]enkephalin and a cysteine protease known as "prohormone thiol protease," demonstrated localization of endopin 1 to functional secretory vesicles. Punctate, discrete immunofluorescence cellular localization of endopin 1 in chromaffin cells was consistent with its secretory vesicle localization. Endopin 1 contains a unique reactive site loop with Arg as the predicted P1 residue, suggesting inhibition of basic residue-cleaving proteases; indeed, trypsin was potently inhibited (K(i(app)) of 5 nM), and plasmin was moderately inhibited. Although endopin 1 possesses homology with alpha(1)-antichymotrypsin, chymotrypsin was not inhibited. Moreover, endopin 1 inhibited the chromaffin granule prohormone thiol protease (involved in proenkephalin processing). These results suggest a role for the novel serpin, endopin 1, in regulating basic residue-cleaving proteases within neurosecretory vesicles of chromaffin cells.  相似文献   

7.
Enkephalin convertase, an enkephalin-synthesizing carboxypeptidase present in adrenal medulla chromaffin granules, has also been detected in brain and pituitary. To determine whether these three carboxypeptidase activities represent the same enzyme, we purified and characterized enkephalin convertase from adrenal medulla, whole brain, and whole pituitary. Enzyme from all three tissues co-purifies on DEAE-cellulose, gel filtration, concanavalin A, and L-arginine affinity columns, resulting in a 135,000-fold, 110,000-fold, and 2,800-fold purification for bovine adrenal medulla, brain, and pituitary, respectively. Purified enkephalin convertase appears homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, showing a single band with an apparent molecular weight of 50,000 for enzyme isolated from all three tissues. Adrenal, brain, and pituitary enkephalin convertase are similarly inhibited by hexapeptide enkephalin precursors and active site-directed inhibitors. Both [Met]-and [Leu]enkephalin-Arg6 inhibit enkephalin convertase with Ki values between 50 and 80 microM, while [Met]-and [Leu]enkephalin-Lys6 are 3-fold less potent. Two active site-directed inhibitors, guanidinopropylsuccinic acid and guanidinoethylmercaptosuccinic acid, are potent inhibitors of all three enzymes with Ki values of 8-9 nM. A series of dansylated di-, tri-, and tetrapeptide substrates are hydrolyzed by enkephalin convertase with similar kinetic properties (Km, Vmax, and Kcat/Km) for the three enzymes. This evidence suggests that enkephalin convertase activity represents the same enzyme in adrenal medulla, brain, and pituitary. Enkephalin convertase may be involved in the production of other peptide neurotransmitters and hormones besides enkephalin.  相似文献   

8.
Proteolytic processing of inactive proenkephalin and proneuropeptides is essential for the production of biologically active enkephalins and many neuropeptides. The incomplete processing of proenkephalin in adrenal medulla suggests that endogenous protease inhibitors may inhibit proenkephalin processing enzymes. This study demonstrates the isolation and characterization of two isoforms of adrenal medullary alpha1-antichymotrypsin (ACT), referred to as ACT-like proteins I and II, which are colocalized with enkephalin in chromaffin granules and which inhibit the proenkephalin processing enzyme known as prohormone thiol protease (PTP). Subcellular fractionation demonstrated enrichment of 56- and 60-kDa ACT-like proteins I and II, respectively, to enkephalin-containing chromaffin granules (secretory vesicles). Immunofluorescence cytochemistry of chromaffin cells indicated a discrete, punctate pattern of ACT immunostaining that resembles that of [Met]enkephalin that is stored in secretory vesicles. Chromatography of adrenal medullary extracts through DEAE-Sepharose and chromatofocusing resulted in the separation of ACT-like proteins I and II that possess different isoelectric points of 5.5 and 4.0, respectively. The 56-kDa ACT-like protein I was purified to apparent homogeneity by Sephacryl S200 chromatography; the 60-kDa ACT-like protein II was isolated by butyl-Sepharose, Sephacryl S200, and concanavalin A-Sepharose columns. The proenkephalin processing enzyme PTP was potently inhibited by ACT-like protein I, with a K(i,app) of 35 nM, but ACT-like protein II was less effective. ACT-like proteins I and II had little effect on chymotrypsin. These results demonstrate the biochemical identification of two secretory vesicle ACT-like proteins that differentially inhibit PTP. The colocalization of the ACT-like proteins and PTP within chromaffin granules indicates that they could interact in vivo. Results from this study suggest that these ACT-like proteins may be considered as candidate inhibitors of PTP, which could provide a mechanism for limited proenkephalin processing in adrenal medulla.  相似文献   

9.
Biosynthesis of peptide hormones and neurotransmittters involves proteolysis of proprotein precursors by secretory vesicle cathepsin L. Cathepsin L generates peptide intermediates with basic residues at their NH(2)-termini, indicating that Arg/Lys aminopeptidase is needed to generate the smaller biologically active peptide. Therefore, this study identified the Arg/Lys aminopeptidase that is present in secretory vesicles of adrenal medulla and neuroendocrine tissues, achieved by molecular cloning and localization in 'model' neuropeptide-containing secretory vesicles (bovine). Molecular cloning of the bovine aminopeptidase B (AP-B) cDNA defined its primary sequence that allowed selection of antisera for immunolocalization studies. AP-B was present in secretory vesicles that contain cathepsin L with the neuropeptides enkephalin and neuropeptide Y. The AP-B in several neuroendocrine tissues was detected by western blots. Recombinant bovine AP-B showed preference for Arg-methylcoumarinamide substrate. AP-B was inhibited by arphamenine, an inhibitor of aminopeptidases. Bovine AP-B showed similar activities for Arg-(Met)enkephalin (ME) and Lys-ME neuropeptide substrates to generate ME, while rat AP-B preferred Arg-ME. Furthermore, AP-B possesses an acidic pH optimum of 5.5-6.5 that is similar to the internal pH of secretory vesicles. The significant finding of the secretory vesicle localization of AP-B with neuropeptides and cathepsin L suggests a role for this exopeptidase in the biosynthesis of neuropeptides.  相似文献   

10.
Enkephalin convertase, the enkephalin-synthesizing carboxypeptidase B-like enzyme, has been purified to apparent homogeneity from bovine pituitary and adrenal chromaffin granule membranes. The membrane-bound enkephalin convertase can be solubilized in high yield with 0.5% Triton X-100 in the presence of 1 M NaCl. Extensive purification is achieved by affinity chromatography with p-aminobenzoyl-L-arginine linked to Sepharose 6B. Enzyme purified from both pituitary and adrenal chromaffin granule membranes shows a single band by sodium dodecyl sulfate polyacrylamide gel electrophoresis with an apparent molecular weight of 52,500, whereas enkephalin convertase purified from soluble extracts of these tissues has an apparent molecular weight of 50,000. The regional distribution of the membrane-bound enzyme in the rat brain differs from that of the soluble enzyme. While the soluble enzyme shows 10-fold variations, resembling somewhat the enkephalin peptides, membrane-bound enkephalin convertase is more homogeneously distributed throughout the brain. In rat pituitary glands, membrane-bound enzyme activity is similar in the anterior and posterior lobes, whereas the soluble enzyme is enriched in the anterior lobe. Membrane-bound and soluble forms of enkephalin convertase isolated from either bovine pituitary glands or adrenal chromaffin granules show identical substrate and inhibitor specificities. As with the soluble enzyme, membrane-bound enkephalin convertase hydrolyzes [Met]- and [Leu]enkephalin-Arg6 and -Lys6 to enkephalin, with no further degradation of the pentapeptide.  相似文献   

11.
Bovine adrenal chromaffin granules have been shown to contain [Met]enkephalin and [Leu]enkephalin and at least seven other small peptides that exhibit specific binding to opiate receptors. Six of these peptides have been characterized and their structures established as (O)-[Met]enkephalin, [Met]enkephalin-Arg6-Arg7, [Met]enkephalin-Lys6, [Met]enkephalin-Arg6, [Leu]enkephalin-Arg6, and [Met]enkephalin-Arg6-Phe7. Many of these hexa- and heptapeptides are also present in bovine and human brain. It is suggested that the presence of these peptides in a tissue is evidence of a common biosynthetic pathway of the enkephalins from a large precursor protein.  相似文献   

12.
A carboxypeptidase activity has been found in synaptic vesicles (secretory granules) isolated from the cortex and striatum of calf brain which removes amino acids from the carboxy terminus of enkephalin-containing (EC) peptides. The formed enkephalin molecules are not further degraded by this enzyme activity. The preparations were found to be free of cytoplasmic and lysosomal constituents as determined by marker enzyme activities. The vesicle preparations of both cortex and striatum showed differences in the degradation velocities of the various EC peptides depending on size and charge of the amino acid present at the carboxy terminus. The pH optimum of the release of Met-enkephalin from Met-enkephalin-Arg6 has been shown to be between pH 5 and 6. The enzyme activity is inhibited by thiol-blocking agents such as p-hydroxymercuribenzoate and copper ions, but only slightly by metal-chelating agents.  相似文献   

13.
The presence of calmodulin-binding proteins in three neurosecretory vesicles (bovine adrenal chromaffin granules, bovine posterior pituitary secretory granules, and rat brain synaptic vesicles) was investigated. When detergent-solubilized membrane proteins from each type of secretory organelle were applied to calmodulin-affinity columns in the presence of calcium, several calmodulin-binding proteins were retained and these were eluted by EGTA from the columns. In all three membranes, a 65-kilodalton (63 kilodaltons in rat brain synaptic vesicles) and a 53-kilodalton protein were found consistently in the EGTA eluate. 125I-Calmodulin overlay tests on nitrocellulose sheets containing transferred chromaffin and posterior pituitary secretory granule membrane proteins showed a similarity in the protein bands labeled with radioactive calmodulin. In the presence of 10(-4) M calcium, eight major protein bands (240, 180, 145, 125, 65, 60, 53, and 49 kilodaltons) were labeled with 125I-calmodulin. The presence of 10 microM trifluoperazine (a calmodulin antagonist) significantly reduced this labeling, while no labeling was seen in the presence of 1 mM EGTA. Two monoclonal antibodies (mAb 30, mAb 48), previously shown to react with a cholinergic synaptic vesicle membrane protein of approximate molecular mass of 65 kilodaltons, were tested on total membrane proteins from the three different secretory vesicles and on calmodulin-binding proteins isolated from these membranes using calmodulin-affinity chromatography. Both monoclonal antibodies reacted with a 65-kilodalton protein present in membranes from chromaffin and posterior pituitary secretory granules and with a 63-kilodalton protein present in rat brain synaptic vesicle membranes. When the immunoblotting was repeated on secretory vesicle membrane calmodulin-binding proteins isolated by calmodulin-affinity chromatography, an identical staining pattern was obtained. These results clearly indicate that an immunologically identical calmodulin-binding protein is expressed in at least three different neurosecretory vesicle types, thus suggesting a common role for this protein in secretory vesicle function.  相似文献   

14.
Peptide neurotransmitters function as key intercellular signaling molecules in the nervous system. These peptides are generated in secretory vesicles from proneuropeptides by proteolytic processing at dibasic residues, followed by removal of N- and/or C-terminal basic residues to form active peptides. Enkephalin biosynthesis from proenkephalin utilizes the cysteine protease cathepsin L and the subtilisin-like prohormone convertase 2 (PC2). Cathepsin L generates peptide intermediates with N-terminal basic residue extensions, which must be removed by an aminopeptidase. In this study, we identified cathepsin H as an aminopeptidase in secretory vesicles that produces (Met)enkephalin (ME) by sequential removal of basic residues from KR-ME and KK-ME, supported by in vivo knockout of the cathepsin H gene. Localization of cathepsin H in secretory vesicles was demonstrated by immunoelectron microscopy and immunofluorescence deconvolution microscopy. Purified human cathepsin H sequentially removes N-terminal basic residues to generate ME, with peptide products characterized by nano-LC-MS/MS tandem mass spectrometry. Cathepsin H shows highest activities for cleaving N-terminal basic residues (Arg and Lys) among amino acid fluorogenic substrates. Notably, knockout of the cathepsin H gene results in reduction of ME in mouse brain. Cathepsin H deficient mice also show a substantial decrease in galanin peptide neurotransmitter levels in brain. These results illustrate a role for cathepsin H as an aminopeptidase for enkephalin and galanin peptide neurotransmitter production.  相似文献   

15.
Proteases within secretory vesicles are required for conversion of neuropeptide precursors into active peptide neurotransmitters and hormones. This study demonstrates the novel cellular role of the cysteine protease cathepsin L for producing the (Met)enkephalin peptide neurotransmitter from proenkephalin (PE) in the regulated secretory pathway of neuroendocrine PC12 cells. These findings were achieved by coexpression of PE and cathepsin L cDNAs in PC12 cells with analyses of PE-derived peptide products. Expression of cathepsin L resulted in highly increased cellular levels of (Met)enkephalin, resulting from the conversion of PE to enkephalin-containing intermediates of 23, 18-19, 8-9, and 4.5 kDa that were similar to those present in vivo. Furthermore, expression of cathepsin L with PE resulted in increased amounts of nicotine-induced secretion of (Met)enkephalin. These results indicate increased levels of (Met)enkephalin within secretory vesicles of the regulated secretory pathway. Importantly, cathespin L expression was directed to secretory vesicles, demonstrated by colocalization of cathepsin L-DsRed fusion protein with enkephalin and chromogranin A neuropeptides that are present in secretory vesicles. In vivo studies also showed that cathepsin L in vivo was colocalized with enkephalin. The newly defined secretory vesicle function of cathepsin L for biosynthesis of active enkephalin opioid peptide contrasts with its function in lysosomes for protein degradation. These findings demonstrate cathepsin L as a distinct cysteine protease pathway for producing the enkephalin member of neuropeptides.  相似文献   

16.
A carboxypeptidase B-like enzyme is involved in processing of proenkephalin in adrenal medulla. Nicotine stimulated the co-release of this enzyme with (Met)enkephalin pentapeptide from bovine chromaffin cells in primary culture. The ratio of enzyme activity/immunoreactivity was determined for the released carboxypeptidase to provide an index of the level of enzyme activity per unit number of enzyme molecules. The ratio for the Co++-stimulated carboxypeptidase secreted into the cell culture medium upon nicotinic stimulation was 10.1 +/- 1.02 (pmol Met-enkephalin formed per ng carboxypeptidase immunoreactivity), while the Co++-stimulated carboxypeptidase in the soluble and membrane components of purified chromaffin granules had lower ratios of 5.46 +/- 0.70 and 1.07 +/- 0.13, respectively. Hexamethonium, a nicotinic receptor antagonist, blocked the nicotine-induced release of the carboxypeptidase processing enzyme and (Met)enkephalin. These data suggest that a pool of carboxypeptidase enzyme molecules at a high state of activation are present in functionally mature granules whose contents are released by nicotinic receptor stimulation.  相似文献   

17.
It was the purpose of this study to define the chromogranin A-processing proteinases present in highly purified preparations of bovine chromaffin granules. The most active enzyme had a pH optimum of 5.0 and was inhibited by pepstatin. It could be identified immunologically as a cathepsin D-like enzyme and subcellular fractionation established its lysosomal origin. After removal of this enzyme the remaining activity at pH 5.0 was mainly due to a cathepsin B-like proteinase. The presence of this enzyme could also be attributed to lysosomal contamination. In the presence of calcium, a further proteolytic activity became apparent at pH 5.0. This enzyme which was inhibited by rho-chloromercuriphenylsulfonic acid was localized in chromaffin granules. A trypsin-like peptidase, most active at pH 8.2, was enriched in a membrane wash of chromaffin granules. Subcellular fractionation indicated that this enzyme is preferentially bound to the membranes of very dense particles probably representing a subpopulation of chromaffin granules. This study establishes that the most active chromogranin A-degrading proteinases present in highly purified chromaffin granules are attributable to lysosomal contamination. Two enzymes with low activity (a Ca2+ activated proteinase and a trypsin-like enzyme) are, apparently, true constituents of chromaffin granules.  相似文献   

18.
A lysate of purified insulin secretory granules, which contains two types of proinsulin processing activity (type 1, Arg-Arg-directed and type II, Lys-Arg-directed (Davidson, H.W., Rhodes, C.J., and Hutton, J. C. (1988) Nature 333, 93-96), was found to process proalbumin by specific proteolytic cleavage of the COOH-terminal side of the Arg-2-Arg-1 sequence. The subcellular distribution of proalbumin processing activity in insulinoma tissue paralleled that for proinsulin conversion and occurred principally in a secretory granule fraction. Cleavage appeared to result from the Arg-Arg-directed type 1 proinsulin processing endo-peptidase. It was Ca2+-dependent (K0.5 activation = 1.0-1.5 mM Ca2+), unaffected by group-specific inhibitors of serine, cysteinyl, or aspartyl proteinases, and had an acidic pH optimum (5.5). Active-site inhibitor studies showed this activity had a preference for dibasic over monobasic amino acid sequences and indicated that the sequence of the dibasic site was an important determinant of the susceptibility of the substrate to cleavage. The activity did not process the proalbumin Christchurch mutant (Arg-2-Arg-1 to Arg-2-Gln-1). It was inhibited by the variant alpha 1-antitrypsin Pittsburgh (Met358 to Arg358; K0.5 = 100 nM) but not by other related proteins normally co-secreted with albumin from hepatocytes, namely alpha 1-antitrypsin M, alpha 2-macroglobulin, or antithrombin III. The insulin secretory granule proalbumin processing activity was indistinguishable from a proalbumin endopeptidase reported in rat liver membranes and similar to the yeast KEX-2 protease. These findings suggest that a highly conserved set of proprotein endopeptidases exists, which are specific for a dibasic sequence but broadly specific for proprotein substrates. Such enzymic activities appear to be active within both the constitutive and regulated pathways of secretion. Intraorganellar Ca2+ and pH appear to play a key role in regulating their activities.  相似文献   

19.
This study demonstrates that endopin 2 is a unique secretory vesicle serpin that displays cross-class inhibition of cysteine and serine proteases, indicated by effective inhibition of papain and elastase, respectively. Homology of the reactive site loop (RSL) domain of endopin 2, notably at P1-P1' residues, with other serpins that inhibit cysteine and serine proteases predicted that endopin 2 may inhibit similar proteases. Recombinant N-His-tagged endopin 2 inhibited papain and elastase with second-order rate constants (k(ass)) of 1.4 x 10(6) and 1.7 x 10(5) M(-1) s(-1), respectively. Endopin 2 formed SDS-stable complexes with papain and elastase, a characteristic property of serpins. Interactions of the RSL domain of endopin 2 with papain and elastase were indicated by cleavage of endopin 2 near the predicted P1-P1' residues by these proteases. Endopin 2 did not inhibit the cysteine protease cathepsin B, or the serine proteases chymotrypsin, trypsin, plasmin, and furin. Endopin 2 in neuroendocrine chromaffin cells was colocalized with the secretory vesicle component (Met)enkephalin by confocal immunonfluorescence microscopy, and was present in isolated secretory vesicles (chromaffin granules) from chromaffin cells as a glycoprotein of 72-73 kDa. Moreover, regulated secretion of endopin 2 from chromaffin cells was induced by nicotine and KCl depolarization. Overall, these results demonstrate that the serpin endopin 2 possesses dual specificity for inhibiting both papain-like cysteine and elastase-like serine proteases. These findings demonstrate that endopin 2 inhibitory functions may occur in the regulated secretory pathway.  相似文献   

20.
Abstract: The amyloid β peptide (Aβ) of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APPs), which are considered type I transmembrane proteins. Here we report that the soluble fraction of isolated adrenal medullary chromaffin granules (CG), a model neuronal secretory vesicle system, contains an antigen that immunochemically and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was indistinguishable from full-length APP. A truncated APP fragment with intact Aβ sequence was also detected in the soluble fraction of CG. In vitro experiments showed that full-length APP was solubilized from CG membranes at 37°C as a function of pH, with a peak of activity between pH 8.5 and pH 9.0. Solubilization of full-length APP was inhibited by several protease inhibitors, including aprotinin, cystatin, and iodoacetamide, by the divalent cations Ca2+ and Zn2+, and by preheating of the membranes. These results are consistent with and suggest the involvement of an enzymatic mechanism in the solubilization of potentially amyloidogenic full-length APP. Production of Aβ from a transmembrane APP predicts a proteolytic cleavage within the lipid bilayer, a site relatively inaccessible to proteases. Thus, the detected soluble, potentially amyloidogenic, full-length APP may be a substrate for the proteases producing Aβ. The detection of soluble APP with intact Aβ sequence in secretory vesicles is consistent with the extracellular topology of amyloid depositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号