首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell adhesion to the extracellular matrix through integrin receptors can activate signaling cascades within the cell. Focal adhesion kinase (FAK) is a protein tyrosine kinase activated by integrin adhesion. The role of FAK within the cell is not clear, although evidence suggests roles in cell motility or the regulation of adhesion-dependent cell survival. We have treated primary cultures of chick embryo cells with antisense oligonucleotides to FAK to reduce the level of FAK protein expression. Levels of the related protein, proline-rich tyrosine kinase 2 (Pyk2) and the FAK substrate paxillin, were unaffected by the addition of oligonucleotides, whereas FAK expression was reduced by 70%. Levels of apoptotic cell death did not significantly increase after the addition of oligonucleotides. However, there was a change in the distribution of focal adhesion sites from a uniformly distributed pattern to a mainly peripheral pattern. This was accompanied by a loss of stress fibers and an increase in the peripheral actin cytoskeleton, as the cells became rounded. These results suggest that in these early embryonic cells, FAK expression regulates the arrangement of focal adhesions and the cytoskeleton that result in a motile phenotype, but that FAK does not appear to regulate apoptosis.  相似文献   

2.
About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3′ and 7. Component 3′ has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80–120 Å in diameter. The filaments cannot be composed mainly of actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.  相似文献   

3.
The Balb/3T3 and C3H/10T1/2 lines, noted for their marked postconfluence inhibition of proliferation and anchorage dependence, and frequently studied as nontumorigenic lines that are compared with tumorigenic sublines transformed with various agents, produced tumors within two to four months at low-cell dosage (3 × 104 cells) when implanted subcutaneously attached to 1 × 5 × 10 mm polycarbonate platelets. Platelets alone did not produce tumors. The cultured Balb/3T3 tumor cells showed loss of both postconfluence inhibition of proliferation and anchorage dependence. Tumors arising form attached Balb/3T3 cells in (BALB/c × C57B1/6)F1 hybrids were shown to be transplantable to BALB/c but not to C57B1/6 mice, proving that the tumors were derived form Balb/3T3 and not from host cells. The tumors exhibited unique transplantation rejection antigens that did not cross-react with each other. Scanning electronmicroscopy of Balb/3T3 cells and derive tumor cells on Teflon
  • 1 Teflon: Registered trademark of DuPont Plastics.
  • substrates (on which only the tumor cells and not the parent Balb/3T3 cells could grow) revealed that the two cell types were remarkably similar in appearance, except that the tumor cells were larger and showed many more microvilli that tended to concentrate over the nucleus. We conclude that Balb/3T3 cells and C3H/10T1/2 cells are preneoplastic and give rise to spontaneously transformed clones when implanted in vivo attached to a solid substrate.  相似文献   

    4.
    Cell and tissue patterning in plant embryo development is well documented. Moreover, it has recently been shown that successful embryogenesis is reliant on programmed cell death (PCD). The cytoskeleton governs cell morphogenesis. However, surprisingly little is known about the role of the cytoskeleton in plant embryogenesis and associated PCD. We have used the gymnosperm, Picea abies, somatic embryogenesis model system to address this question. Formation of the apical-basal embryonic pattern in P. abies proceeds through the establishment of three major cell types: the meristematic cells of the embryonal mass on one pole and the terminally differentiated suspensor cells on the other, separated by the embryonal tube cells. The organisation of microtubules and F-actin changes successively from the embryonal mass towards the distal end of the embryo suspensor. The microtubule arrays appear normal in the embryonal mass cells, but the microtubule network is partially disorganised in the embryonal tube cells and the microtubules disrupted in the suspensor cells. In the same embryos, the microtubule-associated protein, MAP-65, is bound only to organised microtubules. In contrast, in a developmentally arrested cell line, which is incapable of normal embryonic pattern formation, MAP-65 does not bind the cortical microtubules and we suggest that this is a criterion for proembryogenic masses (PEMs) to passage into early embryogeny. In embryos, the organisation of F-actin gradually changes from a fine network in the embryonal mass cells to thick cables in the suspensor cells in which the microtubule network is completely degraded. F-actin de-polymerisation drugs abolish normal embryonic pattern formation and associated PCD in the suspensor, strongly suggesting that the actin network is vital in this PCD pathway.  相似文献   

    5.
    The Eph family of receptor tyrosine kinases is involved in limiting cell and tissue interactions via a repulsive mechanism. The mechanism of repulsion involves reorganizing the actin cytoskeleton, but little is known of the molecular components that connect the receptor to the actin cytoskeleton. Recent studies in retinal ganglion cells have demonstrated that EphA4 activates the small GTPase Rho. We have investigated the involvement of Rho in signaling downstream from EphA4. As a model system, we have used a chimeric receptor called EPP that we express and activate in early Xenopus embryos. Previous studies demonstrated that EPP activation leads to loss of cell-cell adhesion and change in cell shape, plus loss of aspects of cell polarity in epithelial cells, such as apical microvilli and the apical/basolateral boundary. In this study, we show that injecting inhibitors of Rho GTPases into early Xenopus embryos produces a phenotype very similar to that resulting from EPP activation. More importantly, expression of a constitutively active form of Xenopus RhoA (XRhoA) concurrent with activated EPP rescued embryos from the loss of cell-cell adhesion and change in cell shape associated with EPP. These data argue that, in contrast to the case in retinal ganglion cells, EphA4 in early Xenopus embryos acts to inhibit RhoA, suggesting that this receptor may regulate Rho differently (and therefore affect the cytoskeleton differently) in neuronal and non-neuronal cells. Furthermore, overexpression of ephexin, a novel guanine nucleotide exchange factor for Rho family GTPases, also blocks EPP-induced dissociation. This suggests that EphA4, which has been demonstrated to activate ephexin in cultured neuronal cells, may also target Rho GTPase via an ephexin-independent pathway.  相似文献   

    6.
    The structural and functional resemblance between the bacterial cell-division protein FtsZ and eukaryotic tubulin was the first indication that the eukaryotic cytoskeleton may have a prokaryotic origin. The bacterial ancestry is made even more obvious by the findings that the bacterial cell-shape-determining proteins Mreb and Mbl form large spirals inside non-spherical cells, and that MreB polymerises in vitro into protofilaments very similar to actin. Recent advances in research on two proteins involved in prokaryotic cytokinesis and cell shape determination that have similar properties to the key components of the eukaryotic cytoskeleton are discussed.  相似文献   

    7.
    The merlin-1 tumor suppressor is encoded by the Neurofibromatosis-2 (Nf2) gene and loss-of-function Nf2 mutations lead to nervous system tumors in man and to several tumor types in mice. Merlin is an ERM (ezrin, radixin, moesin) family cytoskeletal protein that interacts with other ERM proteins and with components of cell-cell adherens junctions (AJs). Merlin stabilizes the links of AJs to the actin cytoskeleton. Thus, its loss destabilizes AJs, promoting cell migration and invasion, which in Nf2(+/-) mice leads to highly metastatic tumors. Paradoxically, the "closed" conformation of merlin-1, where its N-terminal four-point-one, ezrin, radixin, moesin (FERM) domain binds to its C-terminal tail domain, directs its tumor suppressor functions. Here we report the crystal structure of the human merlin-1 head domain when crystallized in the presence of its tail domain. Remarkably, unlike other ERM head-tail interactions, this structure suggests that binding of the tail provokes dimerization and dynamic movement and unfurling of the F2 motif of the FERM domain. We conclude the "closed" tumor suppressor conformer of merlin-1 is in fact an "open" dimer whose functions are disabled by Nf2 mutations that disrupt this architecture.  相似文献   

    8.
    Cells sense and physiologically respond to environmental stress via signaling pathways. Saccharomyces cerevisiae cells respond to cell wall stress by transiently depolarizing the actin cytoskeleton. We report that cell wall stress also induces a transient depolarized distribution of the cell wall biosynthetic enzyme glucan synthase FKS1 and its regulatory subunit RHO1, possibly as a mechanism to repair general cell wall damage. The redistribution of FKS1 is dependent on the actin cytoskeleton. Depolarization of the actin cytoskeleton and FKS1 is mediated by the plasma membrane protein WSC1, the RHO1 GTPase switch, PKC1, and a yet-to-be defined PKC1 effector branch. WSC1 behaves like a signal transducer or a stress-specific actin landmark that both controls and responds to the actin cytoskeleton, similar to the bidirectional signaling between integrin receptors and the actin cytoskeleton in mammalian cells. The PKC1-activated mitogen-activated protein kinase cascade is not required for depolarization, but rather for repolarization of the actin cytoskeleton and FKS1. Thus, activated RHO1 can mediate both polarized and depolarized cell growth via the same effector, PKC1, suggesting that RHO1 may function as a rheostat rather than as a simple on-off switch.  相似文献   

    9.
    This lecture is devoted to the relative contribution of various levels of regulation of the actin cytoskeleton functioning in the cell. Regulation at the levels of gene expression, mRNA and protein synthesis and stability, processes of actin polymerization/depolymerization and actin structures reorganization is briefly considered. Novel information about the pathways of signal transduction to the actin cytoskeleton with the involvement of Arp2/3 complex and RIC proteins is highlighted.  相似文献   

    10.
    hhlim (humanheartlim)是从人胎心cDNA文库中筛选克隆的一个新基因 ,作为LIM家族的新成员参与心肌肥大的发生发展过程 .为了进一步研究hhLIM在心肌肥大发生过程中的作用 ,以C2C12细胞为研究对象 ,以心肌肥大强效刺激因子内皮素 1(ET 1)为诱导因素 ,探讨hhLIM与肌动蛋白的相互作用及其影响细胞骨架的分子机制 .RT PCR、Western印迹和细胞免疫荧光分析结果表明 ,心肌肥大刺激因子ET 1在诱导心肌肥大标志基因BNP和肌动蛋白表达的同时 ,使hhLIM蛋白在C2C12细胞胞核与胞质之间进行重新定位 .激光共聚焦显微镜观察结果显示 ,hhLIM与肌动蛋白在胞质中共定位 .蛋白分步提取、鉴定及hhLIM与F肌动蛋白结合与沉降实验证明 ,hhLIM多存在于细胞骨架及其相关蛋白部分 ,在体外可与F肌动蛋白共结合 .这些结果表明 ,胞质中的hhLIM作为细胞骨架相关蛋白与肌动蛋白相互作用 .进一步研究hhLIM与细胞骨架的关系时发现 ,hhLIM过表达可使C2C12细胞的骨架变成致密网状纤维并使其对细胞松弛素导致的细胞骨架解聚产生一定的抵抗作用 ,抑制hhLIM表达则使细胞骨架稀疏 ,结构模糊 .提示hhLIM参与细胞骨架组织及重构的机制与其结合并稳定F肌动蛋白有关 .  相似文献   

    11.
    Neurulation involves a complex coordination of cellular movements that are in great part based on the modulation of the actin cytoskeleton. MARCKS, an F‐actin‐binding protein and the major substrate for PKC, is necessary for gastrulation and neurulation morphogenetic movements in mice, frogs, and fish. We previously showed that this protein accumulates at the apical region of the closing neural plate in chick embryos, and here further explore its role in this process and how it is regulated by PKC phosphorylation. PKC activation by PMA caused extensive neural tube closure defects in cultured chick embryos, together with MARCKS phosphorylation and redistribution to the cytoplasm. This was concomitant with an evident disruption of neural plate cell polarity and extensive apical cell extrusion. This effect was not due to actomyosin hypercontractility, but it was reproduced upon MARCKS knockdown. Interestingly, the overexpression of a nonphosphorylatable form of MARCKS was able to revert the cellular defects observed in the neural plate after PKC activation. Altogether, these results suggest that MARCKS function during neurulation would be to maintain neuroepithelial polarity through the stabilization of subapical F‐actin, a function that appears to be counteracted by PKC activation.  相似文献   

    12.
    The NG2 chondroitin sulfate proteoglycan is a membrane-spanning molecule expressed by immature precursor cells in a variety of developing tissues. In tightly adherent cell lines with a flattened morphology, NG2 is organized on the cell surface in linear arrays that are highly co-localized with actin and myosin-containing stress fibers in the cytoskeleton. In contrast, microtubules and intermediate filaments in the cytoskeleton exhibit completely different patterns of organization, suggesting that NG2 may use microfilamentous stress fibers as a means of cytoskeletal anchorage. Consistent with this is the observation that cytochalasin D disrupts the organization of both stress fibers in the cytoskeleton and NG2 on the cell surface. Very similar linear cell surface arrays are also seen with three other cell surface molecules thought to interact with the actin cytoskeleton: the α5β1 integrin, the CD44 proteoglycan, and the L1 neuronal cell adhesion molecule. Since the cytoplasmic domains of these four molecules are dissimilar, it seems possible that cytoskeletal anchorage in each case may occur via different mechanisms. One indication of such differences can be seen in colchicine-treated cells which have lost their flattened morphology but still retain long actin-positive tendrils as remnants of the actin cytoskeleton. NG2 and α5β1 are associated with these tendrils while CD44 and L1 are not, suggesting that at least two subclasses of cell surface molecules exist which can interact with different subdomains of the actin cytoskeleton. © 1996 Wiley-Liss, Inc.  相似文献   

    13.
    When intact platelets are incubated at 37 degrees C with Concanavalin A (ConA), the two major surface membrane proteins GPIIb and III become associated with the Triton-insoluble cytoskeleton. Preincubation of platelets with a variety of metabolic inhibitors, including cytochalasin B, 2-deoxy-D-glucose, and antimycin A or lidocaine, had no effect on the ability of ConA to produce this effect. These results suggested that the ConA-induced anchorage of GPIIb and III to the Triton-insoluble cytoskeleton is a passive process requiring clustering of GPIIb-III molecules but not requiring the metabolic energy of an intact cell. This was supported by experiments that showed that ConA binding to plasma membrane-rich fractions at 37 degrees C could induce association of GPIIb and III with a sedimentable actin-rich, Triton-insoluble membrane matrix. Similar results were obtained when membranes were first isolated from ConA-treated cells. Adding DNAse I, an actin depolymerizing agent, into the Triton extraction buffer inhibited the ConA-induced sedimentation of GPIIb-III and actin by 50% in the presence of Mg2+-ATP. Treatment of ConA-treated membranes with dimethyl-3,3'-dithiobispropiomidate, a bifunctional, reducible protein crosslinking agent, produced Triton-insoluble crosslinked species of discrete molecular weights. When these cross-linked species were analyzed by SDS-PAGE in the presence of beta-mercaptoethanol, they were found to be composed of a 180-200 K dalton protein, GPIIb, GPIII, and actin. Crosslinking of these components was equally effective after Triton treatment and indicated as well that the species crosslinked in the intact membrane was stable after Triton extraction. Addition of crosslinker to membranes not treated with ConA produced similar crosslinked species. Analysis of their composition on reduced gels revealed that the amounts of GPIIb and III were reduced greatly (less than 10% of the total input GPIIb and III) but that the 180-200 k dalton protein and actin content were similar to that seen with ConA-treated membranes. These results are consistent with the notion that ConA clusters mobile, unanchored molecules of GPIIb-III (approximately 90-95% of the total) around a small fraction of IIb-III that is associated with a submembranous cytoskeleton.  相似文献   

    14.
    Summry— Spermatogenesis in the primitive marine nematode Sphaerolaimus hirsutus (Chromadoria, Sphaerolaimidae) was investigated by examining the ultrastructure and cytochemistry. Spermatozoa are lenticular cells of about 15 μm in diameter and are devoid of flagellum and acrosome as in other nematodes. In spermatocytes, dictyosomes produced transient structures, the fibrous body-membranous organelle complexes (FB-MO). In spermatids, the FBs were arranged as cartwheel spokes, with the FBs in the centre and the MOs at the periphery. The FBs were first made up of parallel fibres and surrounded by a membrane, then, in a later stage, showed a dense central structure with a surrounding vermiculate region and were devoid of membrane. The FBs contain actin as shown by immunofluorescence using a monoclonal anti-actin antibody and by affinity cytochemistry using fluorescent phalloidin. MOs contained mainly F-actin as shown by their labelling by phalloidin. In spermatozoa, the MOs were no longer peripheral but arranged on a ring in the central region of the cell and the FBs disappeared to form the cytoskeleton of the cell outer region. It was assumed, by analogy with the ultrastructure of other nematodes, that this cytoskeleton was made up of major-sperm-protein (MSP). Labelling of spermatids of Caenorhabditis elegans also revealed the presence of actin, but cells and actin spots were very can be distinguished. In the few species in which it has been studied (C elegans and Ascaris suum), MSP is thought to constitute in spermatozoa a motile cytoskeleton excluding the presence of actin. However, the present study of Sphaerolaimus shows that the actin cytoskeleton is present during nematode spermiogenesis.  相似文献   

    15.
    Brown algae (Phaeophyceae) are an important algal class that play a range of key ecological roles. They are often important components of rocky shore communities. A number of members of the Fucales and Ectocarpales have provided models for the study of multicellular evolution, reproductive biology and polarized development. Indeed the fucoid algae exhibit the unusual feature of inducible embryo polarization, allowing many classical studies of polarity induction. The potential of further studies of brown algae in these important areas has been increasingly hindered by the absence of tools for manipulation of gene expression that would facilitate further mechanistic analysis and gene function studies at a molecular level. The aim of this study was to establish a method that would allow the analysis of gene function through RNAi‐mediated gene knockdown. We show that injection of double‐stranded RNA (dsRNA) corresponding to an α‐tubulin gene into Fucus serratus Linnaeus zygotes induces the loss of a large proportion of the microtubule cytoskeleton, leading to growth arrest and disruption of cell division. Injection of dsRNA targeting β‐actin led to reduced rhizoid growth, enlarged cells and the failure to develop apical hair cells. The silencing effect on actin expression was maintained for 3 months. These results indicate that the Fucus embryo possesses a functional RNA interference system that can be exploited to investigate gene function during embryogenesis.  相似文献   

    16.
    α辅肌动蛋白的结构和功能   总被引:5,自引:0,他引:5  
    α辅肌动蛋白是近年来在细胞骨架与细胞运动研究中的热点蛋白 .目前发现有α辅肌动蛋白 1、2、3和 4四种类型 ,呈细胞或组织特异性分布 .这四种蛋白的共同结构特征是在细胞内均为反向平行的二聚体 ,并具有N末端肌动蛋白结合结构域 (ABD)、血影蛋白样中央重复结构域和C末端“EF手”结构域 .作为细胞骨架中一种重要的肌动蛋白交联蛋白 ,α辅肌动蛋白通过与其相关蛋白包括整合素 (integrins)、钙粘素 (cadherin)以及细胞信号传导通路中的信号分子等的协同作用 ,在稳定细胞粘附、调节细胞形状及细胞运动中发挥着重要作用 .因此 ,肿瘤的发生、发展和恶化与α辅肌动蛋白的结构、功能密切相关 .本文结合本实验室的研究工作 ,综述了α辅肌动蛋白家族成员的结构、功能及其与肿瘤发生的相关性 .  相似文献   

    17.
    In this work, we show that the proteins Pkc1 and Pfy1 play a role in the repolarization of the actin cytoskeleton and in cell survival in response to oxidative stress. We have also developed an assay to determine the actin polymerization capacity of total protein extracts using fluorescence recovery after photobleaching techniques and actin purified from rabbit muscle. This assay allowed us to demonstrate that Pfy1 promotes actin polymerization under conditions of oxidative stress, while Pkc1 induces actin polymerization and cell survival under all the conditions tested. Our assay also points to a relationship between Pkc1 and Pfy1 in the actin cytoskeleton polymerization that is required to adapt to oxidative stress.  相似文献   

    18.
    Hepatic fibrosis is a common response to chronic liver injury and is characterized by increased production of extracellular matrix components, whose major part is produced by hepatic stellate cells activated by inflammatory mediators to proliferate and migrate into the injured regions. GRX cells are a model of hepatic stellate cells characterized as myofibroblasts by morphological and biochemical criteria. We have recently shown that they respond to inflammatory mediators and cytokines present in the concanavalin A-activated spleen cell supernatant (SCS) by quantitative changes in the expression of intermediate filaments. The present study investigated the effects of SCS and TNF-alpha on the GRX cell proliferation and on the organization of the actin cytoskeleton. SCS and TNF-alpha diminished the culture cell density, with an increase of cell [(3)H]thymidine incorporation and of cellular protein content, indicating an arrest in the G2/M phase of the cell cycle, which was reversible 48 h after removal of SCS. This effect was abrogated by dibutiryl-cAMP. Actin cytoskeleton reorganization was observed after 24 h treatment, indicating increased cell motility. Our results suggest that inflammation-dependent activation of stellate cells occurs in ordered interaction and coordination of proinflammatory agents. The increase of cAMP levels activates the conversion of lipocytes into myofibroblasts and increases the number of cells that can participate in repair. Since cAMP retains cells in the G1 phase, cytokines of the TNF-alpha group are required for cell proliferation inducing the entry into the S phase. The progression through the G2/M checkpoint is mediated again by increased cAMP levels.  相似文献   

    19.
    Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C‐terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline‐rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell‐wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin‐dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin‐remodelling mechanisms.  相似文献   

    20.
    Protein phosphorylation with specific protein kinases plays the key role in the regulation of meiotic maturation of oocytes. However, little is known about the contribution of kinases to the temporal and positional regulation of the cytoskeleton rearrangement in maturing oocytes, including the actin cytoskeleton. In order to study a relationship between the kinase activities and actin cytoskeleton rearrangement, we analyzed protein phosphorylation in the isolated actin cytoskeleton of Xenopus laevis oocytes. Analysis of the full grown oocytes and eggs injected with [-32P]ATP has revealed phosphorylation of many proteins associated with the actin cytoskeleton and shown the appearance of three additional major phosphoproteins, 20, 43, and 69 kDa, during oocyte maturation. A significant number of these phosphoproteins were also found after incubation of the isolated cytoskeleton with [-32P]ATP in vitro, thus confirming that the kinases modifying these substrates are also specifically associated with actin. The in vivo and in vitro kinase activities were also stimulated during maturation. Analysis of kinase self-phosphorylation in situ and protein phosphorylation in solutions and substrate containing gels revealed a set of actin-associated kinases, including cAMP- and Ca2+-dependent kinases, as well as MAP, p34cdc2, and tyrosine kinase activities. Their level was the highest in the eggs. The involvement of kinases in the actin cytoskeleton rearrangement during oocyte maturation is discussed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号