首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel thermo-alkali-stable catalase from Thermus brockianus was purified and characterized. The protein was purified from a T. brockianus cell extract in a three-step procedure that resulted in 65-fold purification to a specific activity of 5300 U/mg. The enzyme consisted of four identical subunits of 42.5 kDa as determined by SDS-PAGE and a total molecular mass measured by gel filtration of 178 kDa. The catalase was active over a temperature range from 30 to 94 degrees C and a pH range from 6 to 10, with optimum activity occurring at 90 degrees C and pH 8. At pH 8, the enzyme was extremely stable at elevated temperatures with half-lives of 330 h at 80 degrees C and 3 h at 90 degrees C. The enzyme also demonstrated excellent stability at 70 degrees C and alkaline pH with measured half-lives of 510 h and 360 h at pHs of 9 and 10, respectively. The enzyme had an unusual pyridine hemochrome spectrum and appears to utilize eight molecules of heme c per tetramer rather than protoheme IX present in the majority of catalases studied to date. The absorption spectrum suggested that the heme iron of the catalase was in a 6-coordinate low spin state rather than the typical 5-coordinate high spin state. A K(m) of 35.5 mM and a V(max) of 20.3 mM/min.mg protein for hydrogen peroxide was measured, and the enzyme was not inhibited by hydrogen peroxide at concentrations up to 450 mM. The enzyme was strongly inhibited by cyanide and the traditional catalase inhibitor 3-amino-1,2,4-triazole. The enzyme also showed no peroxidase activity to peroxidase substrates o-dianisidine and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), a trait of typical monofunctional catalases. However, unlike traditional monofunctional catalases, the T. brockianus catalase was easily reduced by dithionite, a characteristic of catalase-peroxidases. The above properties indicate that this catalase has potential for applications in industrial bleaching processes to remove residual hydrogen peroxide from process streams.  相似文献   

2.
3.
Survival of Bacteroides fragilis in the presence of oxygen was dependent on the ability of bacteria to synthesize new proteins, as determined by the inhibition of protein synthesis after oxygen exposure. The B. fragilis protein profile was significantly altered after either a shift from anaerobic to aerobic conditions with or without paraquat or the addition of exogenous hydrogen peroxide. As determined by autoradiography after two-dimensional gel electrophoresis, approximately 28 newly synthesized proteins were detected in response to oxidative conditions. These proteins were found to have a broad range of pI values (from 5.1 to 7.2) and molecular weights (from 12,000 to 79,000). The hydrogen peroxide- and paraquat-inducible responses were similar but not identical to that induced by oxygen as seen by two-dimensional gel protein profile. Eleven of the oxidative response proteins were closely related, with pI values and molecular weights from 5.1 to 5.8 and from 17,000 to 23,000, respectively. As a first step to understanding the resistance to oxygen, a catalase-deficient mutant was constructed by allelic gene exchange. The katB mutant was found to be more sensitive to the lethal effects of hydrogen peroxide than was the parent strain when the ferrous iron chelator bipyridyl was added to culture media. This suggests that the presence of ferrous iron in anaerobic culture media exacerbates the toxicity of hydrogen peroxide and that the presence of a functional catalase is important for survival in the presence of hydrogen peroxide. Further, the treatment of cultures with a sublethal concentration of hydrogen peroxide was necessary to induce resistance to higher concentrations of hydrogen peroxide in the parent strain, suggesting that this was an inducible response. This was confirmed when the bacterial culture, treated with chloramphenicol before the cells were exposed to a sublethal concentration of peroxide, completely lost viability. In contrast, cell viability was greatly preserved when protein synthesis inhibition occurred after peroxide induction. Complementation of catalase activity in the mutant restored the ability of the mutant strain to survive in the presence of hydrogen peroxide, showing that the catalase (KatB) may play a role in oxidative stress resistance in aerotolerant anaerobic bacteria.  相似文献   

4.
A manganese-containing catalase has been characterized from Thermoleophilum album NM, a gram-negative aerobic bacterium obligate for thermophily and n-alkane substrates. The level of catalase in cells was increased about ninefold by growth in the presence of paraquat (2.5 microM), a superoxide-generating toxicant. Superoxide dismutase levels were unaffected by this compound. The enzyme was purified from cultures grown in the presence of paraquat to greater than 95% homogeneity and had an Mr of 141,000. The enzyme was composed of four subunits, and each had an Mr of 34,000. There were 1.4 +/- 0.4 atoms of manganese present per subunit. The catalase had a Km for hydrogen peroxide of 15 mM and a Vmax of 11 mM/mg. Peroxidase activity, as measured with p-phenylenediamine, copurified with the catalase. Inhibitors of heme-catalase were weak inhibitors of the T. album enzyme. The optimum pH for catalase activity was 8 to 9. The enzyme was stable from pH 6.5 to 11 and retained activity at assay temperatures from 25 to 80 degrees C. The catalase was stable for 24 h of incubation at 60 degrees C.  相似文献   

5.
Pseudomonas aeruginosa is an obligate aerobe that is virtually ubiquitous in the environment. During aerobic respiration, the metabolism of dioxygen can lead to the production of reactive oxygen intermediates, one of which includes hydrogen peroxide. To counteract the potentially toxic effects of this compound, P. aeruginosa possesses two heme-containing catalases which detoxify hydrogen peroxide. In this study, we have cloned katB, encoding one catalase gene of P. aeruginosa. The gene was cloned on a 5.4-kb EcoRI fragment and is composed of 1,539 bp, encoding 513 amino acids. The amino acid sequence of the P. aeruginosa katB was approximately 65% identical to that of a catalase from a related species, Pseudomonas syringae. The katB gene was mapped to the 71- to 75-min region of the P. aeruginosa chromosome, the identical region which harbors both sodA and sodB genes encoding both manganese and iron superoxide dismutases. When cloned into a catalase-deficient mutant of Escherichia coli (UM255), the recombinant P. aeruginosa KatB was expressed (229 U/mg) and afforded this strain resistance to hydrogen peroxide nearly equivalent to that of the wild-type E. coli strain (HB101). The KatB protein was purified to homogeneity and determined to be a tetramer of approximately 228 kDa, which was in good agreement with the predicted protein size derived from the translated katB gene. Interestingly, KatB was not produced during the normal P. aeruginosa growth cycle, and catalase activity was greater in nonmucoid than in mucoid, alginate-producing organisms. When exposed to hydrogen peroxide and, to a greater extent, paraquat, total catalase activity was elevated 7- to 16-fold, respectively. In addition, an increase in KatB activity caused a marked increase in resistance to hydrogen peroxide. KatB was localized to the cytoplasm, while KatA, the "housekeeping" enzyme, was detected in both cytoplasmic and periplasmic extracts. A P. aeruginosa katB mutant demonstrated 50% greater sensitivity to hydrogen peroxide than wild-type bacteria, suggesting that KatB is essential for optimal resistance of P. aeroginosa to exogenous hydrogen peroxide.  相似文献   

6.
1. The velocity of decomposition of hydrogen peroxide by catalase as a function of (a) concentration of catalase, (b) concentration of hydrogen peroxide, (c) hydrogen ion concentration, (d) temperature has been studied in an attempt to correlate these variables as far as possible. It is concluded that the reaction involves primarily adsorption of hydrogen peroxide at the catalase surface. 2. The decomposition of hydrogen peroxide by catalase is regarded as involving two reactions, namely, the catalytic decomposition of hydrogen peroxide, which is a maximum at the optimum pH 6.8 to 7.0, and the "induced inactivation" of catalase by the "nascent" oxygen produced by the hydrogen peroxide and still adhering to the catalase surface. This differs from the more generally accepted view, namely that the induced inactivation is due to the H2O2 itself. On the basis of the above view, a new interpretation is given to the equation of Yamasaki and the connection between the equations of Yamasaki and of Northrop is pointed out. It is shown that the velocity of induced inactivation is a minimum at the pH which is optimal for the decomposition of hydrogen peroxide. 3. The critical increment of the catalytic decomposition of hydrogen peroxide by catalase is of the order 3000 calories. The critical increment of induced inactivation is low in dilute hydrogen peroxide solutions but increases to a value of 30,000 calories in concentrated solutions of peroxide.  相似文献   

7.
Catalase, which is one of the key enzymes of the cellular antioxidant defense system, prevents free hydroxyl radical formation by breaking down hydrogen peroxide into oxygen and water. Here, we show the cloning and characterization of a catalase gene in a coleopteran insect. This gene was isolated by searching the white-spotted flower chafer Protaetia brevitarsis cDNA library, and the gene itself encodes a protein of 505 amino acids in length, named PbCat. PbCat shows high similarities to the insect catalase genes known to date. The recombinant PbCat, which is expressed as a 56-kDa polypeptide in baculovirus-infected insect Sf9 cells, shows the highest activity at 30 degrees C and pH 7.0. Northern and Western blot analyses revealed the presence of PbCat in all tissues examined, showing its ubiquitous expression. P. brevitarsis larvae in which H(2)O(2) was overloaded, showed a marked up-regulation in PbCat expression. Moreover, P. brevitarsis larvae showed an apparent increase in PbCat expression even after a wounding through injection. These results indicate that PbCat is up-regulated after wounding and oxidative pressure induced by H(2)O(2), reflecting an important role of PbCat in H(2)O(2) scavenging.  相似文献   

8.
Vitreoscilla is a gram-negative bacterium that contains a unique bacterial hemoglobin that is relatively autoxidizable. It also contains a catalase whose primary function may be to remove hydrogen peroxide produced by this autoxidation. This enzyme was purified and partially characterized. It is a protein of 272,000 Da with a probable A2B2 subunit structure, in which the estimated molecular size of A is 68,000 Da and that of B, 64,000 Da, and an average of 1.6 molecules of protoheme IX per tetramer. The turnover number for its catalase activity was 27,000 s-1 and the Km for hydrogen peroxide was 16 mM. The peroxidase activity measured using o-dianisidine was 0.6% that of the catalase activity. Cyanide, which inhibited both catalase and peroxidase activities, bound the heme in a noncooperative manner. Azide inhibited the catalase activity but stimulated the peroxidase activity. An apparent compound II was formed by the reaction of the enzyme with ethyl hydrogen peroxide. The enzyme was reducible by dithionite, and the ferrous enzyme reacted with CO. The cellular content of Vitreoscilla hemoglobin varies during the growth cycle and in cells grown under different conditions, but the ratio of hemoglobin to catalase activity remained relatively constant, indicating possible coordinated biosynthesis and supporting the putative role of Vitreoscilla catalase as a scavenger of peroxide generated by Vitreoscilla hemoglobin.  相似文献   

9.
10.
Approximately one-half of the lignin and most of the hemicellulose present in agricultural residues such as wheat straw and corn stover are solubilized when the residue is treated at 25 degrees C in an alkaline solution of hydrogen peroxide. The delignification reaction is most efficient when the ratio of hydrogen peroxide to substrate is at least 0.25 (w/w) and the pH is 11.5. The supernatant fraction from a given pretreatment, after addition of makeup peroxide and readjustment of the pH, can be recycled to treat at least six additional batches of substrate, resulting in a substantial concentration of hemicellulose and soluble lignin degradation products. Hydrolysis of the insoluble fraction with Trichoderma reesei cellulase after alkaline peroxide treatment yields glucose with almost 100% efficiency, based upon the cellulose content of the residue before treatment. These data indicate that alkaline peroxide pretreatment is a simple and efficient method for enhancing the enzymatic digestibility of lignocellulosic crop residues to levels approaching the theoretical maximum.  相似文献   

11.
Catalase from acatalasemic dog liver was purified to homogeneity and its properties were compared with those of normal dog liver catalase. The purified acatalasemic and normal dog liver catalases were found to have the same molecular weight (230,000 Da) and isoelectric point (pI: 6.0-6.2) and both enzymes contained four hematins per molecule. The catalytic activity of catalase from acatalasemic dog was normal. Furthermore, there was no difference between the acatalasemic and normal dog catalases in the binding affinity to NADPH (apparent Kd: 0.11-0.12 microM) and in the sensitivity to oxidative stress by hydrogen peroxide, the normal substrate of catalase. The acatalasemic dog enzyme was stable only in a narrow pH range (pH 6-9) although the normal enzyme was stable in a wide pH range (pH 4-10). Acatalasemic dog liver catalase also showed a slight low thermal stability at 37 degrees C and the heat-lability was remarkable at 45 degrees C, compared to the normal dog enzyme. These results indicated that the acatalasemic dog catalase is catalytically normal although it is associated with an unstable molecular structure.  相似文献   

12.
The degradation of fructosamines, formed from the non-enzymic glycation of proteins under physiological conditions, to advanced glycation end products was investigated by studying the model peptide fructosamine N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine (DHL). At pH 7.4 and 37 degrees C in aerobic phosphate buffer, DHL degraded to form N epsilon-carboxymethyl-hippuryl-lysine, and hippuryl-lysine over a 29-day incubation period. The expected N epsilon-(3-lactato)hippuryl-lysine and 'hippuryl-lysylpyrraline' derivatives were not found. Superoxide radicals and hydrogen peroxide were formed during the degradation of DHL but were also both consumed during the degradation reaction. Reversal of the Amadori rearrangement was not a major fate of the fructosamine. The formation of N epsilon-carboxymethyl-hippuryl-lysine was decreased by desferrioxamine, catalase, superoxide dismutase, catalase with superoxide dismutase, anaerobic conditions and aminoguanidine. The formation of hippuryl-lysine was decreased by desferrioxamine, catalase and catalase with superoxide dismutase, but was increased by the addition of aminoguanidine. N epsilon-Carboxymethyl-serine and unmodified lysine residues are major peptide-based end products in the degradation of lysyl-fructosamine under physiological conditions. Oxygen, redox-active metal ions, catalase, superoxide dismutase and the pharmacological agent aminoguanidine are expected to be influential on the rate and fate of fructosamine degradation.  相似文献   

13.
研究了利用含D-氨基酸氧化酶(D-amino acid oxidase,DAO EC1.4.3.3)的透性化三角酶母多倍体FA10(Trigonopsis variabilis FA10)细胞酶促转化头孢菌素C(cephalosporin C,CPC)为戊二酰-7-氨基头孢烷酸(Glutaryl-7-ACA,GL-7ACA)的反应过程和细胞中同时存在的过氧化氢酶(Catalase,CAT)通过水解H2O2而对转化反应产生的干扰作用及其对策。实验证明适量添加外源H2O2(6%)或在反应体系中加入过氧化氢酶抑制剂NaN3(0.13mg/mL )可使GL-7ACA生成率分别为73.0%和70.1%。如果将透性化的FA10细胞在pH10.5-11.0,20℃条件下保温30min,CAT被不可逆性完全钝化,以无过氧化氢酶的FA10细胞进行CPC的酶促转化反应GL-7ACA的生成率可达84%。  相似文献   

14.
Catalase is a highly conserved heme-containing antioxidant enzyme known for its ability to degrade hydrogen peroxide into water and oxygen. In low concentrations of hydrogen peroxide, the enzyme also exhibits peroxidase activity. We report that mammalian catalase also possesses oxidase activity. This activity, which is detected in purified catalases, cell lysates, and intact cells, requires oxygen and utilizes electron donor substrates in the absence of hydrogen peroxide or any added cofactors. Using purified bovine catalase and 10-acetyl-3,7-dihydroxyphenoxazine as the substrate, the oxidase activity was found to be temperature-dependent and displays a pH optimum of 7-9. The Km for the substrate is 2.4 x 10(-4) m, and Vmax is 4.7 x 10(-5) m/s. Endogenous substrates, including the tryptophan precursor indole, the neurotransmitter precursor beta-phenylethylamine, and a variety of peroxidase and laccase substrates, as well as carcinogenic benzidines, were found to be oxidized by catalase or to inhibit this activity. Several dietary plant micronutrients that inhibit carcinogenesis, including indole-3-carbinol, indole-3-carboxaldehyde, ferulic acid, vanillic acid, and epigallocatechin-3-gallate, were effective inhibitors of the activity of catalase oxidase. Difference spectroscopy revealed that catalase oxidase/substrate interactions involve the heme-iron; the resulting spectra show time-dependent decreases in the ferric heme of the enzyme with corresponding increases in the formation of an oxyferryl intermediate, potentially reflecting a compound II-like intermediate. These data suggest a mechanism of oxidase activity involving the formation of an oxygen-bound, substrate-facilitated reductive intermediate. Our results describe a novel function for catalase potentially important in metabolism of endogenous substrates and in the action of carcinogens and chemopreventative agents.  相似文献   

15.
Glucose oxidase enzymes were used to produce hydrogen peroxide from glucose and oxygen in aqueous solutions. Different working conditions, that is, temperature, aeration with liquefied air, presence of cotton fibre and time of enzyme activity, were tested in order to obtain a solution with the highest possible concentration of hydrogen peroxide. The hydrogen peroxide produced was transformed into different peracids which could bleach the cotton fabric under mild conditions, at a pH between 7 and 8 and at a temperature of around 60°C. The conversion or activation of hydrogen peroxide was conducted with the bleach activators TAED, NOBS and TBBC. The concentrations of hydrogen peroxide and peracids in the solutions were measured with sodium thiosulphate titrations.

The results indicated that the formation of hydrogen peroxide with glucose oxidase was effective under optimal conditions, which are 50°C, pH 4.6 and aeration. Convenient activators for the conversion of hydrogen peroxide into peracids were TAED and TBBC, which enabled attainment of a relatively high degree of whiteness at pH 7.5 and temperature 50°C. Using the activator NOBS under these conditions did not provide enough peracid to markedly improve whiteness.  相似文献   

16.
In the present study, we investigated how cytochrome c catalyzed the nitration of tyrosine at various pHs. The cytochrome c-catalyzed nitration of tyrosine occurred in proportion to the concentration of hydrogen peroxide, nitrite or cytochrome c. The cytochromec-catalyzed nitration of tyrosine was inhibited by catalase, sodium azide, cystein, and uric acid. These results show that the cytochrome c-catalyzed nitrotyrosine formation was due to peroxidase activity. The rate constant between cytochrome c and hydrogen peroxide within the pH range of 3-8 was the largest at pH 6 (37 degrees C). The amount of nitrotyrosine formed was the greatest at pH 5. At pH 3, only cytochromec-independent nitration of tyrosine occurred in the presence of nitrite. At this pH, the UV as well as visible spectrum of cytochrome c was changed by nitrite, even in the presence of hydrogen peroxide, probably via the formation of a heme iron-nitric oxide complex. Due to this change, the peroxidase activity of cytochrome c was lost.  相似文献   

17.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

18.
Studies on the autoxidation of dopamine: interaction with ascorbate   总被引:2,自引:0,他引:2  
An oxygen electrode was used to monitor the reaction between dopamine (DA, 1-20 mM) and oxygen at pH 7.4 and 37 degrees C, in both the presence and absence of ascorbate (10 mM). The selected concentrations approximate levels within DA neurons. Diethylenetriaminepentaacetic acid (DTPA, 0.1 mM) was used to suppress catalysis by trace metals in the reagents. Separate experiments with catalase showed that oxygen consumption could be equated with the formation of hydrogen peroxide. Depending upon the experimental conditions, ascorbate acted either as an antioxidant, suppressing oxygen consumption (H2O2 production) to 6-8% of the expected rate, or as a prooxidant, amplifying oxygen consumption by 640%. The antioxidant action is consistent with the scavenging of superoxide radicals by ascorbate. The prooxidant action is probably the result of redox cycling of a pre-melanin oxidation product derived from DA. Analyses conducted by high-performance liquid chromatography with electrochemical detection revealed formation of a product with a very low oxidation potential; the product was not 6-hydroxydopamine. These observations may be relevant to concepts of toxicity mediated by DA within neuronal systems.  相似文献   

19.
20.
Catalase is an antioxidant enzyme that plays a significant role in protection against oxidative stress by detoxification of hydrogen peroxide (H2O2). A gene coding for a putative catalase was isolated from the disk abalone (Haliotis discus discus) cDNA library and denoted as Ab-catalase. The full-length (2864 bp) Ab-catalase cDNA contained 1,503 bp open reading frame (ORF), encoding 501 amino acid residues with 56 kDa predicted molecular weight. The deduced amino acid sequence of Ab-catalase has characteristic features of catalase family such as catalytic site motif (61FNRERIPERVVHAKGAG77), heme-ligand signature motif (351RLYSYSDT358), NADPH and heme binding residues. Phylogenetic and pairwise identity results indicated that Ab-catalase is more similar to scallop (Chlamys farreri) catalase with 80% amino acid identity except for other reported disk abalone catalase sequences. Constitutive Ab-catalase expression was detected in gill, mantle, gonad, hemocytes, abductor muscle and digestive tract in tissue specific manner. Ab-catalase mRNA was up-regulated in gill and digestive tract tissues for the first 3h post injection of H2O2, showing the inducible ability of abalone catalase against oxidative stress generated by H2O2. The purified recombinant catalase showed 30,000 U/mg enzymatic activity against H2O2 and biochemical properties of higher thermal stability and broad spectrum of pH. Our results suggest that abalone catalase may play an important role in regulating oxidative stress by scavenging H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号