首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Kallikrein has been localized in rodent kidney and salivary glands by means of an immunoglobulin-enzyme bridge technique. In sections of kidney, anti-kallikrein antibodies bound to the apical region of certain distal tubule segments in the cortex, to reabsorption droplets of proximal convoluted tubules, and to certain duct segments in the papilla. In salivary glands of both male and female rats and mice, and apical rim of most striated duct cells of submandibular, parotid and sublingual glands and granular tubules of submandibular glands exhibited immunoreactivity. Granular intercalated duct cells in female submandibular glands also displayed immunostaining for kallikrein. Phenylephrine administration resulted in loss of immunoreactive granules from the granular convoluted tubule cells of male mouse submandibular gland. This response was paralleled by a biochemically demonstrable decrease in kallikrein-like tosylarginine methyl ester (TAME) esterase activity.  相似文献   

2.
Tissue kallikrein (E.C. 3.4.21.35) and arginine esterase A, another closely related, kinin-generating serine protease, have been localized by immunocytochemistry in rat kidney, using monoclonal antibodies that do not crossreact with other kallikrein-related enzymes or with tonin. Kallikrein was present primarily in the apical cytoplasm of the connecting tubule and the cortical collecting duct. Esterase A, on the other hand, was present primarily in the basolateral region of both proximal and distal straight tubules in the outer medulla and medullary rays. In addition, esterase A was demonstrable in distal convoluted tubules and, to a lesser extent, in proximal convoluted tubules. The presence of different kinin-generating enzymes at these sites would permit the formation of kinins from appropriate substrates on both the vascular and luminal poles of separate segments of the kidney tubule.  相似文献   

3.
Tonin and kallikrein are serine proteases present in high concentrations in the submandibular gland of the rat. These enzymes release the vasoactive peptides angiotensin II and lysyl-bradykinin from the precursors angiotensinogen and kininogen, respectively. Tonin and kallikrein were purified from homogenates of rat submandibular gland, and antisera against each protein were raised in rabbits. The anti-kallikrein antibody also reacted with tonin, showing partial cross-reactivity between kallikrein and tonin when tested by double immunodiffusion and by immunoelectrophoresis. The anti-tonin antibody did not appear to react with kallikrein in immunodiffusion systems. The cellular localization of tonin was investigated by the indirect immunofluorescence and the peroxidase-antiperoxidase techniques. In the granular tubular cells tonin-specific staining was abundantly present with a granular distribution; in the striated duct cells tonin-specific staining was observed as a thin luminal rim. Tonin was not detected in any other structures of the gland. When the localization of tonin was compared with that of kallikrein, both enzymes were found within the same granular tubular cells. However, more kallikrein than tonin was detected in the striated duct cells. Furthermore, kallikrein but not tonin was found in the ductal cells of the parotid and sublingual glands.  相似文献   

4.
Summary Calcium-binding protein (CaBP) has been localized with the immunoperoxidase method using antiserum against purified chick duodenal CaBP. Different preparative procedures were employed to investigate the experimental conditions possibly responsible for the contradictory reports in the literature of the precise cellular localization of CaBP. Freeze substitution, frozen sections followed by fixation and coagulant and non-coagulant fixatives were used with appropriate control sections to demonstrate that the true localization of CaBP in the chick duodenum is in the absorptive cell cytoplasm. The goblet cell localization reported in the literature seems to be a diffusion artifact due to inadequate fixation. CaBP was also localized in several other tissues. In the hen uterus, the tubular glands beneath the surface epithelium showed intense reaction. In the kidney, CaBP was present in the cells of the straight and convoluted segments of distal tubules. The cortex of the chick cerebellum showed the CaBP in Purkinje cells. The entire dendritic trees contained the reaction product. No other neurons in the molecular or the granular layer were stained. In the deep cerebellar nuclei, all neurons were negative and these were outlined by deeply staining axons of the Purkinje cells and their synaptic endings.  相似文献   

5.
Summary Nerve growth factor (NGF) was localized in the submandibular, sublingual, and parotid salivary glands of male and female diabetic mice and their normal littermates by immunoperoxidase staining usingp-phenylenediamine-pyrocatechol as a chromogen for the cytochemical demonstration of peroxidase activity. In the normal male submandibular gland, immunoreactive NGF was localized in the apical regions of granular, intercalated and collecting duct cells, while in the normal female submandibular gland, NGF was present throughout the cytoplasm of granular duct cells. The localization of NGF in the diabetic male and female submandibular glands was similar and resembled that of the normal female. NGF immunoreactivity was also observed in the striated duct cells in the sublingual and parotid glands of all four types of mice.The sympathetic innervation of the submandibular glands of normal and diabetic mice was demonstrated using glyoxylic acid-induced histofluorescence. The pattern of sympathetic innervation and the intensity of catecholamine fluorescence was consistently different in the four types of mice. In the normal male submandibular gland the fluorescence was very intense, particularly in nerves adjacent to the granular ducts. In the normal female submandibular gland, the fluorescence was weak, while in the diabetic male and female the fluorescence was moderate.The correlation between the intensity of the immunocytochemical staining for NGF and the catecholamine fluorescence adjacent to the granular ducts suggests a trophic influence of the NGF-containing granular ducts on their sympathetic innervation.  相似文献   

6.
Nucleotide sequences of cDNA were used to construct antibodies against an aquaporin (AQP) expressed in the clawed toad, Xenopus laevis, viz., Xenopus AQP3, a homolog of mammalian AQP3. Xenopus AQP3 was immunolocalized in the basolateral membrane of the principal cells of the ventral skin, the urinary bladder, the collecting duct and late distal tubule of the kidney, the absorptive epithelial cells of the large intestine, and the ciliated epithelial cells of the oviducts. Therefore, we designated this AQP as basolateral Xenopus AQP3 (AQP-x3BL). The intensity of labeling for AQP-x3BL differed between the ventral and dorsal skin, with the basolateral membrane of the principal cells in the ventral skin showing intense labeling, whereas that in the dorsal skin was lightly labeled. AQP-x3BL was also immunolocalized in the basolateral membrane of secretory cells in the small granular and mucous glands of the skin. As AQP-x5, a homolog of mammalian AQP5, is localized in the apical membrane of these same cells, this provides a pathway for fluid secretion by the glands. Although Hyla AQP-h2 is translocated from the cytoplasm to the apical membrane of the Hyla urinary bladder in response to arginine vasotocin (AVT), AQP-h2 immunoreactivity in Xenopus bladder remains in the cytoplasm and barely moves to the apical membrane, regardless of AVT stimulation. AQP-x3 is localized in the basolateral membrane, even though the AVT-stimulated AQP-h2 does not translocate to the apical membrane. These findings provide new insights into AQP function in aquatic anurans.  相似文献   

7.
Cyclic AMP response element-binding protein (CREB) is a 43-kDa polypeptide that binds a cAMP response element located at the 5 promoter region of cAMP regulatory genes. The spatial and temporal distribution of CREB in the post-natal development of the rat submandibular gland was investigated using immunohistochemistry with a specific antibody. At birth, cells of the terminal tubules and ducts in the submandibular gland showed a nuclear CREB immunoreactivity of moderate intensity. At 1–2 weeks after birth, an intense CREB immunoreactivity was localized primarily to acinar cells. When the r352;-adrenergic agonist isoproterenol was administered to 2-week-old rats, a twofold transient increase in the number of immunoreactive acinar cells was induced. Beginning 3 weeks after birth, CREB immunoreactivity shifted from acini to the duct system and showed a clear localization in the cells of the intercalated ducts and distal portions of striated ducts, where the granular convoluted tubule develops after 4 weeks. Immunopositive materials were localized exclusively in the nuclei of both acinar and ductal immunoreactive cells. After the development of the granular convoluted tubules, CREB immunoreactivity was absent in the tubule cells and was gradually reduced in intensity over the entire gland. In order to examine a hypothesis that CREB is involved in the initial differentiation of the granular convoluted tubular cells, testosterone was administered to hypophysectomized adult rats. Whereas the tubular cells of hypophysectomized rats showed a complete regression, and no CREB immunoreactivity was found in any acinar or duct cells, administration of testosterone for a few days induced an intense CREB immunoreactivity in the nuclei of duct cells, followed by their differentiation into the granular convoluted tubular cells. These results suggested that CREB is involved not only in the growth and differentiation of acinar ce lls that are regulated by r352;-adrenergic nerves but also in those of the duct system, and especially in the androgen-regulated differentiation of the granular convoluted tubular cells, during the post-natal development of the rat submandibular gland.  相似文献   

8.
Distribution of vitamin D-dependent calcium-binding proteins (CaBPs) were studied in four mammalian species using monospecific antibodies raised against chick duodenal CaBP (D-CaBP), human cerebellar CaBP (L-CaBP), and rat duodenal CaBP (S-CaBP). The immunoperoxidase technique of unlabelled antibodies was employed. The distribution of D-CaBP/L-CaBP was identical in all the species studied except for the monkey. In the rat, pig, and human nephrons, D-CaBP/L-CaBP was seen in the cytoplasm of the cells of the distal convoluted tubules, initial segments of the collecting ducts and interspersed cells of the collecting ducts. Proximal convoluted tubules, glomeruli and maculae densae were negative. In the monkey, in addition to the cells of the distal convoluted tubules, the cells along the entire length of the collecting ducts were also strongly positive. S-CaBP was found to be species-specific, and hence positive results were obtained only in the rat nephron. The strongest positive reaction for S-CaBP was seen in the cells of the distal convoluted tubules. These same cells were also positive for D-CaBP/L-CaBP. S-CaBP was also detected in the cells of the thick ascending limb of the loop of Henle, along the entire length of the collecting ducts and in smaller amounts in cells of the macula densa. Intracellularly the S-CaBP was present only in the apical cytoplasm of positive cells. D-CaBP/L-CaBP stained the entire cytoplasm but the staining in the apical cytoplasm was denser.  相似文献   

9.
Exocrine dermal glands, comparable to the class 3 glandular units of insects, are found in the gills of the grass shrimp, Palaemonetes pugio. The dermal glands are composed of three cells: secretory cell, hillock cell and canal cell. Originating as a complex invagination of the apical cytoplasm of the granular secretory cell, a duct ascends through the hillock and canal cells to the cuticular surface. The duct is divisible into four regions: the secretory apparatus in the granular secretory cell, the locular complex, the hillock region within the hillock cell and the canal within the canal cell. A tubular ductule is contained within the latter two regions. As the ductule ascends to the cuticular surface, its constitution gradually changes from one of a fibrous material to one which possesses layers of epicuticle. During the proecdysial period, the ductule is extruded into the ecdysial space and this is followed by the secretion of a new ductule. Temporary ciliary structures, located near the secretory apparatus of the secretory cell, are associated with the extrusion and reformation of the ductule. Characterized only by a basal body and rootlets throughout most of the intermolt cycle, the ciliary organelles give rise to temporary axonemic processes which ascend through the ductule toward the ecdysial space at the onset of proecdysis. Subsequently, the old ductule is sloughed off and a new ductule is reformed around the ciliary axonemes. Following this reformation, the ciliary axonemes degenerate. The function of cytoplasmic processes, derived from the apical cytoplasm of the secretory cell, is also discussed.  相似文献   

10.
Summary The submandibular glands of female mice and the sublingual and parotid glands of adult male and female mice have been examined by light microscopical immunocytochemistry for nerve growth factor (NGF). In female submandibular glands, staining for NGF was observed in granular convoluted tubule and striated duct cells. Sublingual glands of the mouse contained relatively few granular cells staining for NGF compared with submandibular glands. However, such granular cells appeared to be more numerous in male sublingual glands than in female glands. The remainder of the intralobular duct cells in both male and female sublingual glands exhibited apical subluminal staining for NGF as well as light basal plasmalemmal staining. Parotid glands in both male and female mice exhibited a similar pattern of staining for NGF in striated duct cells. However, the glands did not contain granular cells nor did they exhibit any pattern of staining which reflected a sexual dimorphism. Immunodot staining of salivary gland extracts confirmed the presence of immunoreactivity for NGF in all three of the major salivary glands.  相似文献   

11.
The rat submandibular gland contains several members of the kallikrein family. In the present study we purified and raised an antiserum against one of these enzymes, i.e., esterase B, which was first described by Khullar et al. in 1986. N-terminal amino acid analysis revealed complete homology between esterase B and the kallikrein family gene RSKG-7. For characterization of the antiserum, flat-bed isoelectrofocusing with immunoblotting was superior to immunoelectrophoresis and double immunodiffusion in detecting and identifying crossreacting proteins. This was due to the fact that kallikrein-like enzymes were readily separated by isoelectrofocusing, and immunoreactivity was easily detected by the sensitive peroxidase-anti-peroxidase staining after blotting onto nitrocellulose membrane. Immunohistochemical controls were carried out accordingly, including homologous as well as crossreacting antigens. In the submandibular gland, esterase B was detected exclusively in all granular convoluted tubular cells, co-localized with tissue kallikrein and tonin. Some staining was also observed in striated duct cells; however, this staining reaction was induced by cross-reactivity with kallikrein, since staining was abolished by addition of kallikrein as well as esterase B to the primary antiserum. It was therefore concluded that like tonin and antigen gamma, but unlike kallikrein, esterase B was not detected in the striated ducts of the submandibular, parotid, or sublingual glands. This separation in anatomic distribution between esterase B and kallikrein may indicate that prokallikrein activation is not the only biological function of esterase B.  相似文献   

12.
Summary Morphological changes in submandibular glands of female mice following ovariectomy were studied morphometrically by light microscopy and ultrastructurally by electron microscopy. The X zone of the adrenal gland was examined in order to assess possible changes that might be expected to occur after ovariectomy.In submandibular glands, 1 to 4 weeks after ovariectomy, no changes were observed in percentages of the acinar, intercalated duct, and granular convoluted tubular areas occupying photomicrographs. However, an increase in the granular content of both intercalated duct and granular convoluted tubular cells was recognized. By contrast, the glandular picture 4 months after ovariectomy changed remarkably, resembling that of the male mouse both morphometrically and in terms of fine structure. In the adrenal cortex of control female mice, the X zone became thinner with aging. As compared with this, the X zone of ovariectomized mice at any time after the operation was thicker than that of controls.These observations suggest that the absence of ovarian hormones in the ovariectomized mouse may lead to prolonged functioning of X zone cells, which in turn may cause masculinization of the submandibular gland.  相似文献   

13.
Renal ischemic events open tight junctions and disrupt epithelial polarity. The purpose of this study was to examine the effects of ischemia-reperfusion (IR) injury on expression and distribution of the tight junction proteins, occludin and ZO-1, in the rat kidney. IR injury was induced by clamping both renal pedicles for 30 min and animals were killed at 6 h after the reperfusion. IR injury decreased blood bicarbonate level, but did not persistently alter pH, Na(+), K(+), or Cl(-). In control kidneys, occludin immunoreactivity was intense in the tight junctions in the thick ascending limb, distal convoluted tubule, and collecting duct, moderate in the thin limbs of the loop of Henle, and was not detected in the proximal tubule, glomerulus, and blood vessels. ZO-1 was expressed in the same sites in which occludin was expressed, and additionally was also expressed in the proximal tubule, glomerulus, and vascular endothelial cells. IR kidneys exhibited damaged renal tubular epithelial cells in both proximal tubule and collecting duct segments in the outer medulla. In the collecting duct, the response of intercalated cells and principal cells differed. Following IR injury, intercalated cells, but not principal cells, lost their normal epithelial polarity and were frequently extruded into the tubule lumen. Occludin, instead of being localized to tight junctions, was localized diffusely in the cytoplasm in intercalated cells of IR kidneys. Principal cells, in contrast, were not detectably affected and neither occludin nor ZO-1 expression were altered in response to IR injury. The normal localization of ZO-1 expression to tight junction sites in both the proximal tubule and collecting duct was altered in response to IR, and, instead, ZO-1 expression was present diffusely in the cytoplasm. IR injury did not alter detectably either occludin or ZO-1 localization to the tight junction of the thick ascending limb cells. The abundance of total occludin protein by immunoblot analysis was not changed with IR injury. These results demonstrate that renal IR injury causes tight junction disruptions in both the proximal tubule and the collecting duct, and that altered distribution of the tight junction protein, occludin, may play a critical role in the collecting duct dysfunction which IR induces.  相似文献   

14.
Glycoprotein AM1, a glycoprotein from the submandibular glands of the mouse was isolated from the 100 000 X g tissue extract by polyacrylamide gel electrophoresis. An antiserum to purified glycoprotein AM1 was prepared, and its specificity was tested by immunodiffusion and immunoelectrophoresis. Glycoprotein AM1 could be detected in large quantity only in the submandibular glands of the mouse and in very small amounts in the parotid and sublingual glands and in serum. No glycoprotein AM1 was found in the murine brain, heart, lung, liver, spleen, kidney, pancreas, spinal cord and testis. In addition, glycoprotein AM1 was not detectable in the submandibular glands of the rat and rabbit, and in whole human saliva. No cross-reactivity was found with murine submandibular proteinase A and porcine pancreatic kallikrein. The cellular localization of glycoprotein AM1 was determined by the indirect immunofluorescence technique. In the submandibular glands bright fluorescence was only present in the acinar cells, throughout the whole gland. In the sublingual glands faint fluorescence was detectable as a diffuse network around the acini and possibly in the serous acinar demilune cells. On a subcellular level, glycoprotein AM1 could be demonstrated in the extract of the SMC secretory granular fraction, which originates largely from the acinar cells. On the other hand, glycoprotein AM1 was hardly detectable in the SMB secretory granular fraction, which originates predominantly from the granular convoluted tubular cells. Concomitantly, glycoprotein AM1 was secreted in vivo and could be detected in whole saliva, particularly after stimulation with isoproterenol and carbamylcholine, and also with phenylephrine, but to a much lesser extent.  相似文献   

15.
Vasopressin regulates transepithelial osmotic water permeability in the kidney collecting duct and in target cells in other tissues. In the presence of hormone, water channels are inserted into an otherwise impermeable apical plasma membrane and the apical surface of these cells is dramatically remodelled. Because cytochalasin B and D greatly reduce the response of these cells to vasopressin, actin filaments are believed to participate in the events leading to an increase in transepithelial water permeability. Modulation of the actin filamentous network requires the concerted action of specific actin regulatory proteins, and in the present study we used protein A-gold immunocytochemistry to localize two important molecules, gelsolin and actin binding protein (ABP), in epithelial cells of the kidney inner medulla. Gelsolin and, to a lesser extent, ABP were concentrated in clusters in the apical cell web of principal cells of the collecting duct. Aggregates of gold particles were often associated with the cytoplasmic side of plasma membrane regions forming surface extensions or microvilli. The basolateral plasma membrane was labeled to a much lesser extent than the apical plasma membrane. In the thin limbs of Henle, ABP was localized over the apical plasma membrane in ascending limbs, but gelsolin labeling was weak in these cells. In thin descending limbs, the pattern of labeling was completely reversed, with abundant apical gelsolin labeling but only weak ABP immunolabeling. Although the significance of the distribution of actin regulatory proteins in thin limbs is unknown, the abundance and the predominantly apical polarization of both ABP and gelsolin in principal cells of the collecting duct is consistent with a role of the actin cytoskeleton in the mechanism of vasopressin actin.  相似文献   

16.
The convoluted tubular cells of the male mouse submandibular gland contain many serous-like granules in their apical cytoplasm. The autonomic regulation of the secretory process of the contents of these granules was studied by the following two methods: (1) immunochemical method using an antiserum specific to the granular components; and (2) histometric observations using light and electron microscopes. The results obtained by these two methods were well in agreement. When male mice were administered either phenylephrine or norepinephrine, the amount of granules in the glands significantly decreased. These two adrenergic stimulators were very effective, whereas synephrine was less effective. When mice were injected with a beta-adrenergic agent(isoproterenol) or a parasympathomimetic agent (pilocarpine), the amount of granules in the glands did not change. The alpha-adrenergic blockers phenoxybenzamine and phentolamine almost completely neutralized the effect of alpha-adrenergic agents on the glands, whereas another alpha-blocker (ergotamine) was less effective. These facts suggest that the secretion of the granular components is mediated by way of alpha-adrenergic receptor sites in the glands.  相似文献   

17.
Abstract The ultrastructure of unicellular accessory glands (= prostate glands) and external male ducts of the cestode Cylindrotaenia hickmaniare described. Accessory glands open into the lumen of the external common sperm duct (= external vas deferens). The gland cells contain abundant endoplasmic reticulum, Golgi bodies and secretory bodies, and have elongate necks that pierce the apical cytoplasm of the duct. Cell contact with the apical cytoplasm of the sperm duct is mediated by septate desmosomes. Accessory glands secrete spherical particles, with a diameter of approximately 70 nm, that adhere to spermatozoa. The roles of these accessory glands may relate to activity of the sperm or development of the female system after insemination. Paired sperm ducts arise from testes, and unite to form a common sperm duct. Each duct consists of a tubular anucleate cytoplasmic region which is supported by nucleated cytons that lie sunken in the parenchyma. The apical cytoplasm of the paired sperm ducts (= vasa efferentia) possesses apical microvilli and abundant mitochondria, but few other cytoplasmic features. The apical cytoplasm of the common sperm duct possesses sparse apical microvilli and numerous electronlucent vesicles. The male gonoducts form an elongate syncytium which is markedly polarized along the length of the ducts. The ducts also display apical–basal polarity in that sunken nucleated cytons support the apical cytoplasm which in turn has distinct basal and apical domains.  相似文献   

18.
Rat salivary glands were studied by Hanson's method to specify the ultrastructural localization of carbonic anhydrase (CA). Two different procedures were used: 1) The embedding of the tissues in water-soluble resins, followed by the incubation of the resin sections on the medium. 2) The embedding in epon-araldite of previously incubated frozen sections. Light and electron microscopy were used to observe the distribution and the ultrastructural localization of the cobalt precipitate. In parotid and mandibular glands, CA was localized in the secretion granules and the hyaloplasma of the secretory endpieces. The enzyme was also detected on the basal and lateral membranes of the striated duct cells in the three glands. In the convoluted granular duct cells of the mandibular gland CA was found in the hyaloplasma only. In the sublingual gland, CA was localized in the hyaloplasma of the serous crescents and no activity was detected in the mucous tubules. As regards the localization of the enzyme in the granules of the secretory endpieces of parotid and mandibular glands, it appears that CA has to be considered as a secretory product of these cells; this localization is consistent with the presence of the enzyme in rat saliva.  相似文献   

19.
Quantitative immunogold localization of Na, K-ATPase along rat nephron.   总被引:1,自引:0,他引:1  
Ultrastructural localization of Na, K-ATPase alpha-subunit along rat nephron segments was investigated quantitatively by immunogold electron microscopy on LR-White ultrathin sections using affinity-purified antibody against alpha-subunit of the enzyme. Ultrathin sections were incubated with the antibody at a saturation level and the number of gold particles bound per micron of the plasma membrane (particle density) of the tubular epithelial cells from the proximal tubule to the collecting duct was determined. In all the tubular epithelial cells, gold particles were located exclusively on the basolateral surface, and no significant binding of gold particles to the apical surface was observed. Distribution of gold particles on the basolateral membranes was quite heterogeneous; lateral membranes and infolded basal membranes were highly labeled, whereas the basal membranes which are in direct contact with the basal lamina were scarcely labeled. The average particle density on the basal surface was highest in the distal straight tubule cells (11.4 units), very high in the distal convoluted tubule cells (9.8 units), intermediate in the proximal tubule cells (3.3 units), in the connecting tubule cells (4.3 units), and in the principal cells of the collecting duct (5.6-3.8 units), low in the thin limb of Henle's loop (1.0 unit), and at the control level in the intercalated cells in the connecting and collecting duct. The relative number of gold particles/mm nephron segment and the relative number of gold particles in the various nephron segments were calculated using quantitative morphological data. The estimated distribution profile of the former was in good agreement with the Na, K-ATPase activity profile in rat nephron, which was determined biochemically with a microenzymatic method.  相似文献   

20.
Immunocytochemical localization of Na+, K+-ATPase in the rat kidney   总被引:1,自引:0,他引:1  
To determine if rat kidney Na+, K+-ATPase can be localized by immunoperoxidase staining after fixation and embedding, we prepared rabbit antiserum to purified lamb kidney medulla Na+, K+-ATPase. When sodium dodecylsulfate polyacrylamide electrophoretic gels of purified lamb kidney Na+, K+-ATPase and rat kidney microsomes were treated with antiserum (1:200), followed by [125I]-Protein A and autoradiography, the rat kidney microsomes showed a prominent radioactive band coincident with the alpha-subunit of the purified lamb kidney enzyme and a fainter radioactive band which corresponded to the beta-subunit. When the Na+, K+-ATPase antiserum was used for immunoperoxidase staining of paraffin and plastic sections of rat kidney fixed with Bouin's, glutaraldehyde, or paraformaldehyde, intense immunoreactive staining was present in the distal convoluted tubules, subcapsular collecting tubules, thick ascending limb of the loops of Henle, and papillary collecting ducts. Proximal convoluted tubules stained faintly, and the thin portions of the loops of Henle, straight descending portions of proximal tubules, and outer medullary collecting ducts did not stain. Staining was confined to basolateral surfaces of tubular epithelial cells. No staining was obtained with preimmune serum or primary antiserum absorbed with purified lamb kidney Na+, K+-ATPase, or with osmium tetroxide postfixation. We conclude that the basolateral membranes of the distal convoluted tubules and ascending thick limb of the loops of Henle are the major sites of immunoreactive Na+, K+-ATPase concentration in the rat kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号