首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many factors can influence the top‐down and bottom‐up dynamics of phytophagous insects. Although interactions between herbivore species have been frequently shown to be ecologically important, the effects of such horizontal trophic interactions on the relative roles of top‐down and bottom‐up forces have gone largely unstudied. In this paper we report on the results of a factorial field experiment in which we examined the effects of within‐trophic‐level interactions on the top‐down and bottom‐up dynamics of a salt marsh planthopper.
We manipulated the bottom‐up effects of plant quality by increasing soil salinity, and manipulated top‐down effects by decreasing the intensity of parasitoid attack with yellow sticky traps that removed hymenopteran parasitoids. We applied these treatments to plots in two patches of the host plant, one with low densities of lepidopteran stem borer larvae, and one with high densities of stem borers. We maintained the treatments and monitored planthopper density for ten months, from March through December 1999. Increased salinity significantly increased planthopper density within one month of the first application of salt. The rapid response of the planthopper to salt treatments suggested a chemical mechanism, perhaps mobilization of bound nitrogen. Yellow sticky traps, although significantly reducing parasitism of planthopper eggs, had little impact on hopper density. The density of lepidopteran stem borers, however, had an even greater impact on planthopper density than did salt treatments, with high stem borer plots supporting much lower densities of hoppers. Stem borer density also reduced the response of the planthopper to other treatments, especially salt supplementation. The results of this study show that the impact of within‐trophic‐level interactions can significantly change herbivore trophic dynamics and can be even more important than either top‐down or bottom‐up effects in determining herbivore density.  相似文献   

2.
In this study we investigated the potential importance of species identity and herbivore feeding mode in determining the strengths of top-down and bottom-up effects on phytophagous insect densities. In 1998, we conducted two factorial field experiments in which we manipulated host plant quality and intensity of parasitoid attack on three salt marsh herbivores, the planthoppers Prokelisia marginata and Pissonotus quadripustulatus (Homoptera: Delphacidae), which feed only on Spartina alterniflora and Borrichia frutescens, respectively, and the gall fly Asphondylia borrichiae (Diptera: Cecidomyiidae), which feeds only on B. frutescens. We increased plant quality through addition of nitrogen fertilizer, and decreased parasitism by trapping hymenopteran parasitoids continuously throughout the study. Herbivore densities were censused biweekly. Increasing plant quality through fertilization increased the density of all three herbivores within 2 weeks of treatment application, and higher densities were maintained for the duration of the study. Reduction of top-down pressure had no effect on either planthopper species, possibly because of compensatory mortality affecting the two species. In contrast, reduction of parasitism significantly increased the density of A. borrichiae galls, perhaps because development within gall tissue reduces the sources of compensatory mortality affecting this species. The results of this study show that the bottom-up effects of plant quality were strong and consistent for all three species, but the strength of top-down effects differed between the two feeding guilds. Thus, even for herbivores feeding on the same host plant, conclusions drawn regarding the relative importance of top-down and bottom-up effects may vary depending upon the feeding mode of the herbivore.  相似文献   

3.
How variations in the strength of bottom-up and top-down forces are mediated by life-history trait differences of insect herbivores is an important but underexplored topic in ecology. Here, we implemented a factorial experiment manipulating plant quality by nitrogen fertilization and attack rates of parasitoids and spiders, respectively. We used sticky traps and mesh barriers in a salt marsh system to examine bottom-up and top-down effects on populations of three hemipteran sap-feeding monophagous species of Phragmites australis with different seasonality. The species included Chloriona alaica and Stenocranus matsumurai most abundant in spring and autumn, respectively, and Dimorphopterus pallipes abundant in both summer and autumn. Fertilization increased the density of S. matsumurai but had no effect on C. alaica and D. pallipes. Its negative effects on densities of the latter two species were even observed in earlier months. On the other hand, parasitoid removal not only increased abundance of all three herbivores, but also reduced the culm diameter, shoot height and biomass of P. australis, suggesting a trophic cascade. The main effects of parasitoid removal were greatest in months when those herbivores had their peak densities. In contrast, spider removal only affected the abundance of S. matsumurai with the greatest effect in September. Our results indicate that parasitoids have strong top-down effects on populations of insect herbivores in P. australis-dominated salt marshes and the strength of their effects is positively correlated with the host density. Furthermore, effects of plant quality and spider predation are more varied among herbivores with different seasonality.  相似文献   

4.
Abstract. 1. Much has been learned in recent years regarding the influence of environmental conditions on top‐down and bottom‐up effects acting on insect herbivores. Temporal variation in environmental conditions, however, has gone largely unstudied in spite of undoubtedly strong influences in most systems. 2. A 2‐year study was conducted to examine the legacy effects of previous manipulations of host plant quality and parasitism pressure on the top‐down and bottom‐up effects influencing population densities of the salt marsh planthopper Pissonotus quadripustulatus. 3. For 10 months in 1998, a 2 × 2 factorial experiment was carried out, in which host plant quality was increased by the addition of nitrogen fertiliser, and parasitism pressure was decreased through the use of yellow sticky traps. This was followed by 2 months in the winter with no treatment applications. Treatments were then reversed in 1999 for a further 10 months. 4. In 1998, fertilisation treatments increased plant quality significantly, which resulted in strong effects on P. quadripustulatus density. Parasitism reduction treatments had weaker and time‐dependent effects on the herbivore, increasing planthopper density in late summer and autumn. 5. After 2 months without treatments, previous fertilisation treatments were still influencing all response variables measured significantly. The legacy effects of fertilisation persisted for at least 7 months for the host plant, and at least 5 months for the herbivore and parasitoid. 6. Fertilisation treatments in 1999 increased P. quadripustulatus density by approximately the same percentage as in 1998, suggesting that previous reductions in parasitism had no influence on herbivore responses to increased nutrients. Parasitism reduction treatments in 1999, however, resulted in greater increases in herbivore density than in 1998, suggesting that previous increases in nutrients enabled greater responses to reductions in top‐down pressure. 7. The results show that the top‐down effects of parasitism attenuated more quickly than did the bottom‐up effects of increased plant quality through greater nutrient availability. They also suggest that the recent history of nutrient status in an ecosystem may be important in determining the relative strengths of top‐down and bottom‐up forces.  相似文献   

5.
Abstract. 1. To investigate the role of intra-guild predation in mediating the impact of the natural enemy complex on herbivore populations, a manipulative field experiment was conducted using uncaged plots (islets of Spartina cordgrass) on a North American salt marsh. The densities (moderate or low) of two invertebrate predators, the generalist wolf spider Pardosa littoralis and the specialist mirid bug Tytthus vagus , were manipulated in a 2 × 2 factorial design, and the resulting treatment effects on the population growth of their herbivorous prey, Prokelisia planthoppers, were assessed.
2. The abundance of wolf spiders on experimental islets was unaffected by the presence of mirid bugs, however the density of mirid bugs was influenced very negatively by the presence of the wolf spider.
3. The negative effect of the wolf spider on mirid bugs most probably resulted from the intra-guild predation of mirids by spiders because planthopper limitation by the wolf spider alone was significantly greater than when both predators were present.
4. As a result of intra-guild predation, planthopper population growth was positive in the presence of both predators, despite the fact that each predator alone promoted a decrease in planthopper population growth.
5. Notably, the occurrence of intra-guild predation diminished top-down impacts on planthopper populations in a relatively simple food web where strong top-down effects were expected. This result, however, was limited to habitats on the marsh with simply structured vegetation lacking leaf litter.  相似文献   

6.
The success of invasive species is often thought to be due to release from natural enemies. This hypothesis assumes that species are regulated by top-down forces in their native range and are likely to be regulated by bottom-up forces in the invasive range. Neither of these assumptions has been consistently supported with insects, a group which includes many destructive invasive species. Winter moth (Operophtera brumata) is an invasive defoliator in North America that appears to be regulated by larval mortality. To assess whether regulation was caused by top-down or bottom-up forces, we sought to identify the main causes of larval mortality. We used observational and manipulative field and laboratory studies to demonstrate that larval mortality due to predation, parasitism, and disease were minimal. We measured the response of larval dispersal in the field to multiple aspects of foliar quality, including total phenolics, pH 10 oxidized phenolics, trichome density, total nitrogen, total carbon, and carbon–nitrogen ratio. Tree-level declines in density were driven by density-dependent dispersal of early instars. Late instar larvae dispersed at increased rates from previously damaged as compared to undamaged foliage, and in 2015 field larval dispersal rates were related to proportion of oxidative phenolics. We conclude that larval dispersal is the dominant source of density-dependent larval mortality, may be mediated by induced changes in foliar quality, and likely regulates population densities in New England. These findings suggest that winter moth population densities in New England are regulated by bottom-up forces, aligning with the natural enemy release hypothesis.  相似文献   

7.
Stiling P  Moon DC 《Oecologia》2005,142(3):413-420
Resource quality (plant nitrogen) and resource quantity (plant density) have often been argued to be among the most important factors influencing herbivore densities. A difficulty inherent in the studies that manipulate resource quality, by changing nutrient levels, is that resource quantity can be influenced simultaneously, i.e. fertilized plants grow more. In this study we disentangled the potentially confounding effects of plant quality and quantity on herbivore trophic dynamics by separately manipulating nutrients and plant density, while simultaneously reducing pressure from natural enemies (parasitoids) in a fully factorial design. Plant quality of the sea oxeye daisy, Borrichia frutescens, a common coastal species in Florida, was manipulated by adding nitrogen fertilizer to increase and sugar to decrease available nitrogen. Plant density was manipulated by pulling by hand 25 or 50% of Borrichia stems on each plot. Because our main focal herbivore was a gall making fly, Asphondylia borrichiae, which attacks only the apical meristems of plants, manipulating plant nitrogen levels was a convenient and reliable way to change plant quality without impacting quantity because fertilizer and sugar altered plant nitrogen content but not plant density. Our other focal herbivore was a sap-sucker, Pissonotus quadripustulatus, which taps the main veins of leaves. Parasitism of both herbivores was reduced via yellow sticky traps that caught hymenopteran parasitoids. Plant quality significantly affected the per stem density of both herbivores, with fertilization increasing, and sugar decreasing the densities of the two species but stem density manipulations had no significant effects. Parasitoid removal significantly increased the densities of both herbivores. Top-down manipulations resulted in a trophic cascade, as the density of Borrichia stems decreased significantly on parasitoid removal plots. This is because reduced parasitism increases gall density and galls can kill plant stems. In this system, plant quality and natural enemies impact per stem herbivore population densities but plant density does not.  相似文献   

8.
1. In this study, the effects of shading and fertilisation on the density of the salt marsh planthopper Pissonotus quadripustulatus (Homoptera: Delphacidae), which is monophagous on Borrichia frutescens (Asteraceae), were assessed. The effects of these abiotic factors on the rate at which Pissonotus eggs were parasitised by Anagrus sp. nr armatus (Hymenoptera: Mymaridae) were also examined. 2. Field plots were shaded by shade cloth suspended above the plots, and fertilised by the application of NH4NO3 fertiliser. Both shading and fertiliser increased plant foliar nitrogen levels significantly. Both shading and fertiliser also increased the density of Pissonotus, presumably because of their effect on plant quality. 3. In addition, both shading and fertiliser increased the percentage of Pissonotus eggs parasitised by Anagrus. This increase in parasitism is probably attributable to changes in host plant morphology induced by the treatments. 4. The results of this study suggest that in stressful environments such as salt marshes, changes in the abiotic environment may play an important role in shaping the community by directly affecting organisms on multiple trophic levels.  相似文献   

9.
1. The relative importance of host-plant resources and natural enemies in influencing the abundance of insect herbivores was investigated in potted plant and natural population experiments, using tephritid (Diptera: Tephritidae) flies, their host plant, creeping thistle Cirsium arvense, and their Hymenoptera parasitoids. 2. Experimental manipulation of host-plant quality (i.e. levels of host-plant nutrients) and resource availability (i.e. the number of buds) increased tephritid abundance. There was no evidence that the seed-feeding tephritid fly Xyphosia miliaria preferentially oviposited on fertilized C. arvense. 3. At low thistle densities, X. miliaria showed a constant rate of resource exploitation. At higher thistle densities, a threshold was detected, above which additional buds were not attacked. 4. Parasitism attack was variable across host (tephritid) densities but levels of parasitism were consistently higher on the fertilized thistles. 5. Experimental manipulation of host-plant quality and resource availability (quantity) not only directly affects the tephritid population but also, indirectly, leads to high rates of parasitism. Both chemical and physical characteristics of host plants affect the performance of natural enemies. 6. Both top-down and bottom-up forces act to influence tephritid abundance, with bottom-up influences appearing to be the most important.  相似文献   

10.
SUMMARY 1. Each individual planktonic plant or animal is exposed to the hazards of starvation and risk of predation, and each planktonic population is under the control of resource limitation from the bottom up (growth and reproduction) and by predation from the top down (mortality). While the bottom-up and top-down impacts are traditionally conceived as compatible with each other, field population-density data on two coexisting Daphnia species suggest that the nature of the two impacts is different. Rates of change, such as the rate of individual body growth, rate of reproduction, and each species' population growth rate, are controlled from the bottom up. State variables, such as biomass, individual body size and population density, are controlled from the top down and are fixed at a specific level regardless of the rate at which they are produced.
2. According to the theory of functional responses, carnivorous and herbivorous predators react to prey density rather than to the rate at which prey are produced or reproduced. The predator's feeding rate (and thus the magnitude of its effect on prey density) should hence be regarded as a functional response to increasing resource concentration.
3. The disparity between the bottom-up and top-down effects is also apparent in individual decision making, where a choice must be made between accepting the hazards of hunger and the risks of predation (lost calories versus loss of life).
4. As long as top-down forces are effective, the disparity with bottom-up effects seems evident. In the absence of predation, however, all efforts of an individual become subordinate to the competition for resources. Biomass becomes limited from the bottom up as soon as the density of a superior competitor has increased to the carrying capacity of a given habitat. Such a shift in the importance of bottom-up control can be seen in zooplankton in habitats from which fish have been excluded.  相似文献   

11.
Habitat edges as a potential ecological trap for an insect predator   总被引:2,自引:0,他引:2  
Abstract.  1. Ecological traps, where animals actively select poor habitat for reproduction over superior habitat, are generally associated with birds at forest edges. This study examines oviposition preference, predation, and parasitism rates in the mantid Stagmomantis limbata to determine the potential generality of this phenomenon.
2. Egg case (oothecae) densities were measured across two edge types (cottonwood and desert scrub) within desert riparian ecosystems. A positive edge effect in oothecae density was found with an approximate three-fold increase in density at cottonwood ( X edge = 0.05 oothecae/100 m2 vs. X interior = 0.015 oothecae/100 m2) and desert scrub ( X edge = 0.20 oothecae/100 m2 vs. X interior = 0.06 oothecae/100 m2) edges ( P  < 0.01).
3. Rates of bird predation were significantly higher for oothecae at desert scrub edges and showed a trend of higher predation rates at cottonwood edges, suggesting that riparian habitat edges may be acting as an ecological trap for this mantid species. There was no effect of edges on oothecal parasitism rates.
4. These results provide an example of the effect of habitat edges on a generalist insect predator and indicate that an ecological trap may exist with respect to one of its natural enemies.  相似文献   

12.
Abstract. 1. Fertilized field plots of Borrichia frutescens (L.) de Candolle produced plants with a higher apical-leaf nitrogen content than control plots.
2. Gall frequency of the cecidomyiid Asphondylia borrichiae Rossi & Strong on stems of B.frutescens , increased significantly on fertilized plots after approximately 3 months.
3. Fertilizer treatment did not result in changes in stem density but did tend to increase proportion of stems flowering and overall plant size. Galls are not normally found on flowering stems.
4. Galls grew at a faster rate and to a larger final size on fertilized plots.
5. On three sampling dates, per cent parasitism of galls was the same on fertilized and control plots; therefore, this study does not support the galldiameter hypothesis.  相似文献   

13.
The monitoring of insect pests in fields of forage maize is difficult because plants are tall and grow at a high density. We investigated the effectiveness of colored sticky traps and appropriate conditions for monitoring insect pests in forage maize fields. Large numbers of the maize orange leafhopper, Cicadulina bipunctata Melichar (Hemiptera: Cicadellidae), and the small brown planthopper, Laodelphax striatellus Fallen (Hemiptera: Delphacidae), were collected during the experimental period with yellow and blue sticky traps placed in summer crop forage maize fields. A greater number of insects were trapped in yellow traps relative to blue traps. Traps located at a lower height (40 cm above the ground) attracted larger numbers of C. bipunctata, whereas L. striatellus did not demonstrate a height-dependent preference. These results indicated that yellow-colored sticky traps located at low height are effective for collecting C. bipunctata and L. striatellus simultaneously. Seasonal occurrence data obtained by the yellow sticky traps showed clearer seasonal occurrences than that obtained by two previously developed methods, suction and light traps, indicating that sticky traps are effective for monitoring the seasonal occurrence of these two insects in forage maize fields.  相似文献   

14.
Abstract.  1. Spatial habitat structure can influence the likelihood of patch colonisation by dispersing individuals, and this likelihood may differ according to trophic position, potentially leading to a refuge from parasitism for hosts.
2. Whether habitat patch size, isolation, and host-plant heterogeneity differentially affected host and parasitoid abundance, and parasitism rates was tested using a tri-trophic thistle–herbivore–parasitoid system.
3.  Cirsium palustre thistles ( n = 240) were transplanted in 24 blocks replicated in two sites, creating a range of habitat patch sizes at increasing distance from a pre-existing source population. Plant architecture and phenological stage were measured for each plant and the numbers of the herbivore Tephritis conura and parasitoid Pteromalus elevatus recorded.
4. Mean herbivore numbers per plant increased with host-plant density per patch, but parasitoid numbers and parasitism rates were unaffected. Patch distance from the source population did not influence insect abundance or parasitism rates. Parasitoid abundance was positively correlated with host insect number, and parasitism rates were negatively density dependent. Host-plant phenological stage was positively correlated with herbivore and parasitoid abundance, and parasitism rates at both patch and host-plant scales.
5. The differential response between herbivore and parasitoid to host-plant density did not lead to a spatial refuge but may have contributed to the observed parasitism rates being negatively density dependent. Heterogeneity in patch quality, mediated by variation in host-plant phenology, was more important than spatial habitat structure for both the herbivore and parasitoid populations, and for parasitism rates.  相似文献   

15.
Quantitative differences in plant defence metabolites, such as glucosinolates, may directly affect herbivore preference and performance, and indirectly affect natural enemy pressure. By assessing insect abundance and leaf damage rate, we studied the responses of insect herbivores to six genotypes of Brassica oleracea var. acephala, selected from the same cultivar for having high or low foliar content of sinigrin, glucoiberin and glucobrassicin. We also investigated whether the natural parasitism rate was affected by glucosinolates. Finally, we assessed the relative importance of plant chemistry (bottom-up control) and natural enemy performance (top-down control) in shaping insect abundance, the ratio of generalist/specialist herbivores and levels of leaf damage. We found that high sinigrin content decreased the abundance of the generalist Mamestra brassicae (Lepidoptera, Noctuidae) and the specialist Plutella xylostella (Lepidoptera, Yponomeutidae), but increased the load of the specialist Eurydema ornatum (Hemiptera, Pentatomidae). Plants with high sinigrin content suffered less leaf injury. The specialist Brevicoryne brassicae (Hemiptera, Aphididae) increased in plants with low glucobrassicin content, whereas the specialists Pieris rapae (Lepidoptera, Pieridae), Aleyrodes brassicae (Hemiptera, Aleyrodidae) and Phyllotreta cruciferae (Coleoptera, Chrysomelidae) were not affected by the plant genotype. Parasitism rates of M. brassicae larvae and E. ornatum eggs were affected by plant genotype. The ratio of generalist/specialist herbivores was positively correlated with parasitism rate. Although both top-down and bottom-up forces were seen to be contributing, the key factor in shaping both herbivore performance and parasitism rate was the glucosinolate concentration, which highlights the impact of bottom-up forces on the trophic cascades in crop habitats.  相似文献   

16.
Whether resources (bottom-up forces), natural enemies (top-down forces), or both, determine the abundance of insect herbivore populations in plant–insect herbivore–natural enemy systems remains a major issue in population ecology. Unlike recent surveys of the tritrophic literature we do not seek to quantify whether top-down or bottom-up forces predominate in any given set of experimental systems. Acknowledging the dearth of empirical synthesis we employ two contrasting literature surveys to determine whether the plant–insect herbivore–natural enemy literature is currently adequate to form a conceptual synthesis of the relative roles of top-down and bottom-up forces. The emergence of a synthesis of the relative roles of top-down and bottom-up forces in plant–insect herbivore–natural enemy systems appears to have been largely prevented by (1) the absence of appropriate empirical data; (2) failure to appreciate the merits of existing data; (3) a continued desire to emphasise either top-down or bottom-up forces to the exclusion of the other; and (4) confusion regarding which processes regulate and which influence the abundance of insect herbivores.  相似文献   

17.
Abstract.  1. Crop domestication has been a largely overlooked factor that may explain why insect herbivores tend to be more abundant and less attacked in agricultural habitats than in native habitats. This study explores how domestication of the sunflower, Helianthus annuus L., affects the sunflower moth, Homoeosoma electellum (Lepidoptera: Pyralidae), and its parasitoids.
2. Common garden experiments were used to assess the effect of domestication on larval abundance in an agricultural and a native habitat. The effect of domestication on parasitism was determined using two studies: one study that manipulated nitrogen according to levels found in agricultural and native habitats, and a second common garden study in the native habitat.
3. At peak infestation in the agricultural common garden, larval abundance was 10 times higher on agricultural plants than on wild plants. In contrast, larval abundance did not differ between plant genotypes in the native habitat.
4. Larvae were four times more likely to be parasitised on wild sunflowers than on agricultural sunflowers, and three times more likely to be parasitised on low nitrogen plants than on high nitrogen plants. Parasitism did not differ between agricultural and wild plants in the native habitat, where flowers were more similar in size.
5. Sunflower domestication has increased larval abundance, accelerated larval development, and lowered parasitism. The magnitude of the effect appears to depend upon nutrient availability. Thus, domestication can disrupt tritrophic interactions, and may help explain why some insect pests are more abundant and less attacked in agro-ecosystems.  相似文献   

18.
Gratton C  Denno RF 《Oecologia》2003,134(4):487-495
Although many studies now examine how multiple factors influence the dynamics of herbivore populations, few studies explicitly attempt to document where and when each is important and how they vary and interact. In fact, how temporal variation in top-down (natural enemies) and bottom-up (host plant resources) factors affect herbivore dynamics has been suggested as a particularly important yet poorly understood feature of terrestrial food webs. In this study we examined how temporal changes in predator density (wolf spiders, sheet-web builders, and mirid egg predators) and host-plant resources (plant quality and structural complexity) influence the population dynamics of the dominant phytophagous insects on Atlantic-coast salt marshes, namely Prokelisia planthoppers (Homoptera: Delphacidae). We designed a factorial experiment in meadows of Spartina alterniflora to mimic natural variation in vegetation quality and structure by establishing two levels of plant nutrition (leaf nitrogen content) by fertilization, and two levels of habitat complexity by adding leaf litter (thatch). We then assessed seasonal changes in the strength of bottom-up (plant quality) and top-down (predator) impacts on planthopper populations. Planthopper populations responded positively to increased plant quality treatments in late summer. Despite the greater number of planthopper adults colonizing fertilized Spartina plots compared to unfertilized controls, the offspring of these colonists were much less abundant at the end of the season in fertilized plots, particularly those with thatch. The initial colonization effect was later erased because arthropod predators selectively accumulated in fertilized plots where they inflicted significant mortality on all stages of planthoppers. Predators rapidly colonized fertilized plots and reached high densities well in advance of planthopper colonization, a response we attribute to their rapid aggregation in complex-structured habitats with readily available alternative prey. Our results suggest that plant resources not only mediate the strength of predator impacts on herbivore populations, but they also promote the coupling of predator and prey populations and thus influence when enemy impacts are realized.  相似文献   

19.
Abstract.  1. Mutualistic associations can vary over spatial and ecological gradients. For herbivorous insects that engage in mutualisms with ants, plant quality can be a particularly important source of variation, because of the upward transfer of nutrients from plants to herbivores to ants.
2. A previous study demonstrated that mutualistic ants, Formica obscuripes , exert a top-down effect on the carbon and nitrogen concentrations (stoichiometry) in an herbivorous membracid, Publilia modesta . We characterised the consequences of mutualism for carbon and nitrogen stoichiometry between the same species pair, yet on an alternative, geographically-distinct host plant.
3. We found no top-down effect of ants on the carbon or nitrogen in the herbivore, but a strong, bottom-up effect of individual plants on membracid nitrogen concentration.
4. These results suggests that spatial heterogeneity in host plant traits, and ultimately the diet breadth of herbivore mutualists, may be important factors mediating stoichiometric patterns in mutualistic associations.  相似文献   

20.
Many plant and animal species have higher densities at the centre of their distribution, with a gradual decline in abundance towards the edge of the range, though reasons for this pattern is not well known. We examined the abundance of the leaf miner Cameraria sp. nova over the range of its host plant Quercus myrtifolia in Florida and addressed how bottom-up and top-down factors varied over its whole distribution. Leaf miner densities, plant quality and natural enemy effects on mine survivorship were evaluated in 40 sites and spatially structured models were used to determine the effects of spatial location on the abundance of Cameraria and effects of both bottom-up (tannin concentration, foliar nitrogen, soil nitrogen, and leaf area) and top-down factors (larval parasitism and predation) on abundance and survivorship. Cameraria mines were, on average, three times more abundant on edge/coastal sites compared to centre/inland sites and did not support the hypothesis of higher abundance on the centre of the distribution. Differences in plant quality, larval parasitism and successful emergence of mines on edge versus central sites might be partially responsible for this finding. A trend surface equation with latitude and longitude combined explained almost 52% of the variation in Cameraria density and a trend surface map also revealed peaks of Cameraria abundance on the edges of the plant distribution. Correlograms also indicated a significant spatial structure of Cameraria as mines were positively spatially autocorrelated at small distances (≈122 km). Partial regression analyses indicated that 69% of the variation in Cameraria abundance was explained by the effects of latitude, longitude, elevation and percentage of foliar nitrogen. Our results indicated that variation in Cameraria abundance was mostly explained by spatial position and significant effects of bottom-up and top-down factors were not detected in our large-scale study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号