首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

2.
Leaf-color mutants are ideal genetic materials for understanding the mechanism of chloroplast development and chlorophyll (Chl) biosynthesis. Here we isolated and identified a new leaf-color mutant of rice, named white-stripe leaf3 (wsl3), from a 60Co-irradiated mutant pool. The wsl3 mutant displayed a visible white-stripe leaf in both young seedlings and flag leaves of mature plant. Chl content in homozygous wsl3 mutant was approximately 47% of that in the wild type. Besides, chloroplast development in the mutant was severely arrested. By a map-based cloning strategy, the wsl3 gene was finely confined to a 50.8 kb region on chromosome 1. Moreover, a 9-bp deletion was identified in the genomic region of LOC_Os01g01920, which encodes an HD (histidine and aspartic acid) domaincontaining protein. Genetic complementation confirmed that LOC_Os01g01920 could recover the lesion of wsl3 mutation. Real-time PCR analyses showed that the expression levels of WSL3 were the highest in young and flag leaves among various tissues, and most of the genes associated with Chl biosynthesis were significantly down-regulated in the wsl3 mutant. Meanwhile, in contrast to many nuclear gene-encoded phage-type RNA polymerase(s) (NEP) transcribed genes were up-regulated, most of plastid-encoded bacterialtype RNA polymerase (PEP) transcribed genes were downregulated. These results demonstrated that the WSL3 gene, as an HD domain-containing protein, is involved in chl biosynthesis and chloroplast development in rice.  相似文献   

3.
Shoot branching and growth are controlled by phytohormones such as auxin and other components in Arabidopsis. We identified a mutant (igi1) showing decreased height and bunchy branching patterns. The phenotypes reverted to the wild type in response to RNA interference with the IGI1 gene. Histochemical analysis by GUS assay revealed tissue-specific gene expression in the anther and showed that the expression levels of the IGI1 gene in apical parts, including flowers, were higher than in other parts of the plants. The auxin biosynthesis component gene, CYP79B2, was up-regulated in igi1 mutants and the IGI1 gene was down-regulated by IAA treatment. These results indicated that there is an interplay regulation between IGI1 and phytohormone auxin. Moreover, the expression of the auxin-related shoot branching regulation genes, MAX3 and MAX4, was down-regulated in igi1 mutants. Taken together, these results indicate that the overexpression of the IGI1 influenced MAX pathway in the shoot branching regulation.  相似文献   

4.
5.
6.
Yin T  Pan G  Liu H  Wu J  Li Y  Zhao Z  Fu T  Zhou Y 《Planta》2012,235(5):907-921
Embryogenesis in higher plants is controlled by a complex gene network. Identification and characterization of genes essential for embryogenesis will provide insights into the early events in embryo development. In this study, a novel mutant with aborted seed development (asd) was identified in Arabidopsis. The asd mutant produced about 25% of albino seeds at the early stage of silique development. The segregation of normal and albino seeds was inherited as a single recessive embryo-lethal trait. The gene disrupted in the asd mutant was isolated through map-based cloning. The mutated gene contains a single base change (A to C) in the coding region of RPL21C (At1g35680) that is predicted to encode the chloroplast 50S ribosomal protein L21. Allele test with other two T-DNA insertion lines in RPL21C and a complementation test demonstrated that the mutation in RPL21C was responsible for the asd phenotype. RPL21C exhibits higher expression in leaves and flowers compared with expression levels in roots and developing seeds. The RPL21C–GFP fusion protein was localized in chloroplasts. Cytological observations showed that the asd embryo development was arrested at the globular stage. There were no plastids with normal thylakoids and as a result no normal chloroplasts formed in mutant cells, indicating an indispensable role of the ASD gene in chloroplasts biogenesis. Our studies suggest that the chloroplast ribosomal protein L21 gene is required for chloroplast development and embryogenesis in Arabidopsis.  相似文献   

7.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED) pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis pathway, but the glucose consumption rate could not be improved. Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally.  相似文献   

8.
Plasmids pKS5 and pKSrec30 carrying normal and mutant alleles of the Deinococcus recA gene controlled by the lactose promoter slightly increase radioresistance of Escherichia coli cells with mutations in genes recA and ssb. The RecA protein of D. radiodurans is expressed in E. coli cells, and its synthesis can be supplementary induced. The radioprotective effect of the xenologic protein does not exceed 1.5 fold and yields essentially to the contribution of plasmid pUC19-recA1.1 harboring the E. coli recA + gene in the recovery of resistance of the ΔrecA deletion mutant. These data suggest that the expression of D. radiodurans recA gene in E. coli cells does not complement mutations at gene recA in the chromosome possibly due to structural and functional peculiarities of the D. radiodurans RecA protein.  相似文献   

9.
10.
11.
Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development.  相似文献   

12.
13.
Yang F  Ma D  Wan Z  Liu W  Ji Y  Li R 《Mycopathologia》2011,172(5):347-355
Aspergillus fumigatus is an opportunistic pathogen that may cause severe invasive disease in immunocompromised patients. The filamentous fungi undergo polarized growth, searching for nutrients in the environment and causing invasive growth in tissue. Sho1 is a sensor of the high osmolarity glycerol pathway, and the sho1 mutant showed a decrease in growth rate. We found that sho1 is involved in the polarized growth of A. fumigatus. The sho1 mutation resulted in extended isotropic growth of germinating conidia followed by multiple germ tubes and wide hyphae with short intercalary cells by calcofluor white staining. The mechanism by which sho1 gene affected polarized growth is investigated. A reduced number of apical vesicles with greater dispersion were observed by transmission electron microscopy in the Spitzenkörper body of the sho1 mutant. Actin patches were distributed randomly at low density at early stages of mutant strain fungal development and reaggregated to the hyphal tip of later stages when long filamentous fungi formed. Actin patches located at the tip of polarized wild-type cells. RNA levels of polarized growth-related genes Rho GTPases were detected by real-time PCR. The sho1 gene did not affect the RNA expression when strains were cultured at 37°C for 6 h. At 17 h, the RNA expression of rho1, rho3 and CDC42 in the sho1 mutant were 0.18-, 0.18- and 0.33-fold of that in the wild type. The sho1 gene affected the polarized growth through affecting the expression of Rho GTPases, the distribution of actin cytoskeleton, vesicle quantity and distribution.  相似文献   

14.
Developmental mutants with defects in fruiting body formation are excellent resources for the identification of genetic components that control cellular differentiation processes in filamentous fungi. The mutant pro4 of the ascomycete Sordaria macrospora is characterized by a developmental arrest during the sexual life cycle. This mutant generates only pre-fruiting bodies (protoperithecia), and is unable to form ascospores. Besides being sterile, pro4 is auxotrophic for leucine. Ascospore analysis revealed that the two phenotypes are genetically linked. After isolation of the wild-type leu1 gene from S. macrospora, complementation experiments demonstrated that the gene was able to restore both prototrophy and fertility in pro4. To investigate the control of leu1 expression, other genes involved in leucine biosynthesis specifically and in the general control of amino acid biosynthesis (“cross-pathway control”) have been analysed using Northern hybridization and quantitative RT-PCR. These analyses demonstrated that genes of leucine biosynthesis are transcribed at higher levels under conditions of amino acid starvation. In addition, the expression data for the cpc1 and cpc2 genes indicate that cross-pathway control is superimposed on leucine-specific regulation of fruiting body development in the leu1 mutant. This was further substantiated by growth experiments in which the wild-type strain was found to show a sterile phenotype when grown on a medium containing the amino acid analogue 5-methyl-tryptophan. Taken together, these data show that pro4 represents a novel mutant type in S. macrospora, in which amino acid starvation acts as a signal that interrupts the development of the fruiting body. Electronic Supplementary Material Supplementary material is available for this article at http://dx.doi.org/10.1007/s00438-005-0021-8  相似文献   

15.
16.
Two uvrA-like genes, designated uvrA1 and uvrA2, that may be involved in nucleotide excision repair in Xanthomonas axonopodis pv. citri (X. a. pv. citri) strain XW47 were characterized. The uvrA1 gene was found to be 2,964 bp in length capable of encoding a protein of 987 amino acids. The uvrA2 gene was determined to be 2,529 bp with a coding potential of 842 amino acids. These two proteins share 71 and 39% identity, respectively, in amino acid sequence with the UvrA protein of Escherichia coli. Analyses of the deduced amino acid sequence revealed that UvrA1 and UvrA2 have structures characteristic of UvrA proteins, including the Walker A and Walker B motifs, zinc finger DNA binding domains, and helix-turn-helix motif with a polyglycine hinge region. The uvrA1 or uvrA2 mutant, constructed by gene replacement, was more sensitive to DNA-damaging agents methylmethane sulfonate (MMS), mitomycin C (MMC), or ultraviolet (UV) than the wild type. The uvrA1 mutant was four orders of magnitude more sensitive to UV irradiation and two orders of magnitude more sensitive to MMS than the uvrA2 mutant. The uvrA1uvrA2 double mutant was one order of magnitude more sensitive to MMS, MMC, or UV than the uvrA1 single mutant. These results suggest that UvrA1 plays a more important role than UvrA2 in DNA repair in X. a. pv. citri. Both uvrA1 and uvrA2 genes were found to be constitutively expressed in the wild type and lexA1 or lexA2 mutant of X. a. pv. citri, and treatment of these cells with sublethal dose of MMC did not alter the expression of these two genes. Results of electrophoresis mobility shift assays revealed that LexA1 or LexA2 does not bind to either the uvrA1 or the uvrA2 promoter. These results suggest that uvrA expression in X. a. pv. citri is not regulated by the SOS response system.  相似文献   

17.
Mutant Arabidopsis thaliana taeniata (tae) plants are characterized by an altered morphology of leaves and the inflorescence. At the beginning of flowering, the inflorescence produces fertile flowers morphologically intermediate between a shoot and a flower. The recessive mutation tae also causes the formation of ectopic meristems and shoot rosettes on leaves. The expressivity of the mutant characters depend on the temperature and photoperiod. Analysis of the activity of KNOX class I genes in the leaves of the tae mutant has demonstrated the expression of genes KNAT2 and STM and an increase in the expression of genes KNAT1 and KNAT6 compared to wild-type leaves. These data indicate that the TAE gene negatively regulates the KNAT1, KNAT2, KNAT6, and STM genes.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1068–1074.Original Russian Text Copyright © 2005 by Lebedeva, Ezhova, Melzer.  相似文献   

18.
A temperature-sensitive mutant of Capsicum chinense, sy-2, shows a normal developmental phenotype when grown above 24°C. However, when grown at 20°C, sy-2 exhibits developmental defects, such as chlorophyll deficiency and shrunken leaves. To understand the underlying mechanism of this temperature-dependent response, phenotypic characterization and genetic analysis were performed. The results revealed abnormal chloroplast structures and cell collapse in leaves of the sy-2 plants grown at 20°C. Moreover, an excessive accumulation of reactive oxygen species (ROS) resulting in cell death was detected in the chlorophyll-deficient sectors of the leaves. However, the expression profile of the ROS scavenging genes did not alter in sy-2 plants grown at 20°C. A further analysis of fatty acid content in the leaves showed the impaired pathway of linoleic acid (18:2) to linolenic acid (18:3). Additionally, the Cafad7 gene was downregulated in sy-2 plants. This change may lead to dramatic physiological disorder and alteration of leaf morphology in sy-2 plants by losing low-temperature tolerance. Genetic analysis of an F2 population from a cross between C. chinensesy-2’ and wild-type C. chinense ‘No. 3341’ showed that the sy-2 phenotype is controlled by a single recessive gene. Molecular mapping revealed that the sy-2 gene is located at a genomic region of the pepper linkage group 1, corresponding to the 300 kb region of the Ch1_scaffold 00106 in tomato chromosome 1. Candidate genes in this region will reveal the identity of sy-2 and the underlying mechanism of the temperature-dependent plant response.  相似文献   

19.
20.
Chlorophyll b is synthesized from chlorophyll a by chlorophyll a oxygenase. We have identified two genes (OsCAO1 and OsCAO2) from the rice genome that are highly homologous to previously studied chlorophyll a oxygenase (CAO) genes. They are positioned in tandem, probably resulting from recent gene duplications. The proteins they encode contain two conserved functional motifs – the Rieske Fe–sulfur coordinating center and a non-heme mononuclear Fe-binding site. OsCAO1 is induced by light and is preferentially expressed in photosynthetic tissues. Its mRNA level decreases when plants are grown in the dark. In contrast, OsCAO2 mRNA levels are higher under dark conditions, and its expression is down-regulated by exposure to light. To elucidate the physiological function of the CAO genes, we have isolated knockout mutant lines tagged by T-DNA or Tos17. Mutant plants containing a T-DNA insertion in the first intron of the OsCAO1 gene have pale green leaves, indicating chlorophyll b deficiency. We have also isolated a pale green mutant with a Tos17 insertion in that OsCAO1 gene. In contrast, OsCAO2 knockout mutant leaves do not differ significantly from the wild type. These results suggest that OsCAO1 plays a major role in chlorophyll b biosynthesis, and that OsCAO2 may function in the dark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号