首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
Experiments conducted over four years (1980–1983) with parsnip cv. Avonre-sister examined the effects of plant density, harvest date and method on seed yield and the components of yield. In 1980, using the root-to-seed method, the yield of seed increased by 50% for an increase in plant density from 5.6 to 35 plants m-2; the maximum yield at the optimum harvest date was 3015 kg h-1. In the other three years, using the seed-to-seed method, seed yield increased to a maximum with an increase in plant density from c. 1 to 10 plants m-2 but at higher densities yields were lower. At c. 10 plants m-2, seed yields were 1567, 4029 and 1040 kg ha-1, in 1981, 1982 and 1983, respectively, when harvested at the optimum time. An increase in plant density increased the number of non-seeding plants in the population, reduced the number of umbels per plant and reduced the number of seeds per umbel. Mean seed weight was, in general, unaffected by plant density and so effects of density on yield reflected changes in seed numbers. Increasing the plant density increased the proportion of primary-umbel seed. Maximum yields of seed were obtained from crops harvested at a seed-moisture content of 50 to 70%, which occurred 46 ± 2·4 days after flowering. Delay in harvesting after this date led to a loss of yield of 33, 35, 139 and 32 kg ha-1wk-1 in 1980, 1981, 1982 and 1983, respectively. Plants cut, placed in the windrow to dry and then threshed gave similar yields to those harvested at the same time but dried in bins.  相似文献   

2.
To study the effects of plant density on populations of the cabbage root fly (Erioischia brassicae), cabbage, cauliflower, Brussels sprout and swede were each planted in plots with twenty-four concentric circles of plants at spacings ranging from 10 to 90 cm between the individual plants. Plants treated with a root drench of chlorfenvinphos and untreated plants were each sampled at ten plant densities which ranged from 1–5 to 68-3 plants/m2. In the absence of insecticide, the numbers of overwintering cabbage root fly pupae produced ranged from c. four per m2 at the lowest plant density to 200 per m2 at the highest. The number of pupae per m2 was proportional to plant density to the powers 0–98,0-77,0–69 and o-6i for the swede, cauliflower, cabbage and Brussels sprout crops, respectively. The magnitude of each cabbage root fly population was determined mainly by plant density but also by the cultivar used as host plant. The results suggested that, in a given locality, when changing from low to high plant density crops during a growing season it should be unnecessary to apply insecticide to control cabbage root fly; conversely, a change from high to low plant densities would necessitate an extremely efficient application of insecticide.  相似文献   

3.

Background and Aims

Increased plant density improves grain yield and nitrogen (N)–use efficiency in winter wheat (Triticum aestivum L.) by increasing the root length density (RLD) in the soil and aboveground N–uptake (AGN) at maturity. However, how the root distribution and N–uptake at different soil depths is affected by plant density is largely unknown.

Methods

A 2–year field study using the winter wheat cultivar Tainong 18 was conducted by injecting 15?N–labeled urea into soil at depths of 0.2, 0.6, and 1.0 m under four plant densities of 135 m?2, 270 m?2,405 m?2, and 540 m?2.

Results

We observed significant RLD and 15?N–uptake increases at each soil depth as the plant density increased from 135 to 405 m?2. 15?N–uptake increased with plant density as the soil depth increased, although the corresponding RLD value fell with depth. The 15?N–uptake at each soil depth was positively related to the RLD at the same depth. The total AGN was positively related to RLD in deep soil, especially at 0.8–1.2 m.

Conclusions

Increasing the plant density from 135 m?2 to the optimum increases AGN primarily by increasing the RLD in deep soil and therefore increasing the plant density of winter wheat can be used to efficiently recover N leached to deep soil. Moreover, the total root numbers per unit area and RLD still increased at supraoptimal density while shoot number and N uptake stagnated.  相似文献   

4.
We investigated the effect of planting density on soybean (Glycine max (L.) Merr.) yield in glasshouse and field experiments. Because net canopy photosynthesis increases with increasing plant density, we hypothesized that increasing planting density would result in increasing rates of dinitrogen fixation in soybeans and higher yields per unit land area.In glasshouse studies, Wayne variety soybeans were planted in 10-cm diameter pots, 1 plant pot-1 in matrices of 10-, 15-, 20-, 25-, or 30-cm equidistant intervals. Bradyrhizobium japonicum inoculum was added to half of the plants in each treatment. Replicate measurements of total stem height, internode lengths, leaf mass, stem mass, root mass, nodule number, nodule mass, and nitrogenase activity were obtained at 3, 6, and 9 weeks post-emergence. Fruits were harvested and counted at week 14. As planting density increased there were (1) altered morphology and growth rates, (2) increased apparent specific nodule activity (SNA), (3) decreased nodule number and mass, and (4) nearly constant fruit and seed production/plant. Expressed on a unit area basis, nitrogen influx and yield increased geometrically as planting density increased, with maximum values observed for 10-cm plantings.Field studies of Wayne, Stein, Williams, and Gold Harvest soybean varieties were made in 1985. Plots were established containing 100 plants spaced at 10-, 20-, and 30-cm distances. Measurements made during the growing season and at harvest established the same relative trends identified from the glasshouse studies. Increasing plant densities resulted in higher yields per unit land. Varietal differences were almost significant.  相似文献   

5.
Thomas W. Jurik 《Oecologia》1991,87(4):539-550
Summary Plots in a naturally occurring population of giant ragweed (Ambrosia trifida L.) near Ames, Iowa, USA were left unthinned (high density,=693 plants/m2) or were thinned in early June 1989 to create low and medium densities of 10 and 50 plants/m2. Size and light environment of individual plants were measured at monthly intervals from June to September. By September, low density plants had 15 times greater biomass/plant and 30 times greater leaf area/plant than high density plants, although biomass and leaf area per unit land area decreased with decreasing density. Plants at high density allocated more biomass to stem growth, but plants at medium and low density had successively higher leaf area ratios, higher potential photosynthetic rates, higher allocation to leaves, and higher growth rates. Average light on leaves decreased with increasing density and also decreased over the growing season in the low and medium densities. The distribution of light environments of individual plants was non-normal and skewed to the left in most months, in contrast to the rightwards skew of distributions of plant size parameters. Inequality in the distributions, as measured by coefficient of variation and Gini coefficients, increased over most of the growing season. There was little effect of density on inequality of stem diameter, height, or estimated dry weight, but inequality in reproductive output greatly increased with density. There was greater inequality in number of staminate flowers produced than in number of pistillate flowers and seeds produced. Path analysis indicated that early plant size was the most important predictor of final plant size and reproductive output; photosynthesis, conductance, and light environment were also significantly correlated with size and reproduction but usually were of minor importance. Variation in growth rate apparently increased inequality in plant size at low density, whereas belowground competition and death of smaller plants may have limited increases in inequality at high density.  相似文献   

6.
Yield and yield components of three semi-leafless pea (Pisum sativum) cultivars, of contrasting seed type/growth habit, were assessed at target planting densities of 40–140 plants/m2 on nine sites over three years. Flat-topped parabolic/asymptotic yield/density relationships were obtained. The plant density required to maximise (p max) and optimise (p opt) yield differed between cultivars: Helka, small blue, p max 126 plants/m2, p opt 101 plants/m2; Solara, large blue, p max 124 plants/m2, p opt 94 plants/m2; and Countess, white-seeded, p max 104 plants/m2, p opt 71 plants/m2. Near-maximum yields were maintained between 70 and 140 plants/m2 due to the ability of the pea crop to make compensatory increases in the number of pods per plant as density declined. Yield/density responses were influenced by site (e.g. soil type) more than by seasonal factors. The risk of yield reductions occurring at densities below 70 plants/m2 was greater on a mineral soil than on a fertile organic soil. On the basis of agronomic and economic considerations, there was no evidence that target plant densities required to optimise yield should necessarily be higher for semi-leafless cultivars studied than for conventional leafed peas.  相似文献   

7.
Summary In 1982 and 1983 root samples were taken by auger from potato crops grown on marine clay in the Flevo-Polder. The roots increased their penetration depth throughout the periods of measurement, and ultimately reached depths between 80 cm and 100 cm below the hills. Between 50 and 60 days after emergence, decay of roots commenced, starting in the upper horizons. In the hill mean root length densities varied between 1 and 2 cm cm−3. Below the hills root density rarely exceeded 1 cm cm−3. The random variation in root density was equivalent to a coefficient of variation of 50%. There were significant effects of the position of sampling (relative to the centre of the plant) on root density; densities were usually lowest beneath the furrow. Depending on season and sampling date, total root length varied between 3.4 and 7.1 km m−2, and root dry mass varied between 33 and 77 g m−2. Representative figures for specific root length were 100–120 m g−1 dry weight. About 90% of the root diameters were smaller than 0.44 mm; the most frequent class (35%) were roots with diameters between 0.12 and 0.20 mm.  相似文献   

8.
Root dynamics in plant and ratoon crops of sugar cane   总被引:1,自引:0,他引:1  
The root system of a sugar cane crop on an Ultisol in northeastern Brazil was examined throughout the plant and first ratoon crop cycles, using both coring and minirhizotron methods. Total root masses (living plus dead, 0.9–1.1 kg m-2) and live root lengths (14.0–17.5 km m-2) were greater during the ratoon cycle than at the end of the plant cane cycle (0.75 kg m-2 and 13.8 km m-2, respectively). Root die-back during the two weeks following ratoon harvest was estimated to be 0.15 kg m-2, about 17% of the total root mass. Root die-back after the plant cane harvest was lower because fire was not used at this harvest and soil humidity was higher under the accumulated litter. A small amount of fine roots proliferated in the litter layer, amounting to 1% of the total mass and 3% of the total length. Root turnover could not be accurately assessed from minirhizotron observations due to variation in the relationship between coring data and the minirhizotron data with both time and soil depth.  相似文献   

9.
No standardized, objective methodology exists for optimizing seeding rates when establishing herbaceous plant cover for pastures, hay fields, ecological restoration, or other revegetation activities. Seeding densities, fertilizer use, season of seeding, and the interaction of these treatments were tested using native plants on degraded sites in northern British Columbia, Canada. A mixture of 20% Achillea millefolium, 20% Carex aenea, 20% Elymus glaucus, 20% Festuca occidentalis, 16% Geum macrophyllum, and 4% Lupinus polyphyllus seed was applied at 0, 375, 750, 1,500, 3,000, and 6,000 pure live seed (PLS) per m2 in 2.5 × 2.5–m rototilled test plots, established in the fall and spring, with and without fertilizer. There was no significant difference in plant cover of sown species between fall seeding and spring seeding, and few treatment interactions were identified in the first 2 years after sowing. There was no significant difference in cover between seed densities of 3,000 and 6,000 PLS/m2 in the first year, nor among 1,500, 3,000, and 6,000 PLS/m2 treatments in the second year. Seed densities as low as 375 PLS/m2 produced year 2 plant cover equivalent to that observed at 3,000 PLS/m2 in year 1. Plots sown to seed densities less than or equal to 750 PLS/m2 generally exhibited an increase (infilling) in plant density from year 1 to year 2, whereas plots sown to seed densities greater than or equal to 1,500 PLS/m2 generally exhibited a decrease (density‐dependent mortality) in plant density. These results imply a most efficient sowing density between 750 and 1,500 PLS/m2 (corresponding to 190–301 established plants.m?2 after two growing seasons). It is suggested that net changes in plant populations observed over a range of sowing densities are a robust and objective means of determining optimal sowing densities for the establishment of herbaceous perennials.  相似文献   

10.
Optimal density of spring rape (Brassica napus L.) crop stand was determined by plant photosynthetic characteristics at the beginning of flowering. As crop density increased from 100 to 350 plants/m2, leaf surface index (LSI) of the crop was found to increase by 18.2–80.2%, and LSI decreased by 38.8–67.3% as compared with the sparsest crop (50–100 plants/m2). LSI depended on the rate of incident PAR reaching 0.5 and 0.25 heights of the crop stand and to the soil surface. When crop density increased from 100 to 350 plants/m2, the photosynthetic potential (PP) of the crop increased 1.8 times as compared with the sparsest crop. PP of the densest rape crop stand was 3 times lower than in the sparsest crop. When the crop density increased from 100 to 250 plants/m2, the daily increment in biomass calculated per leaf surface unit increased by 27.0% as compared with the sparsest crop and depended on LSI. When leaf area decreased, the daily increment in biomass calculated per leaf surface unit declined; in the densest stand, this characteristic was by 58.3% lower than in the sparsest crop. Rape productivity at the flowering stage depended on the crop density, LSI of plants, rate of PAR reaching 0.5 and 0.25 heights of the crop stand and to the soil surface, PP, and the daily increment in biomass calculated per leaf surface unit. Crop productivity at the flowering stage and the rape seed yield were associated by a significant parabolic relationship. When crop density increased from 100 to 350 plants/m2, seed yield per plant considerably decreased (by 33.1–78.5%) as compared with the sparsest crop. The greatest influence on seed yield per plant was exerted by LSI and the daily increment in biomass calculated per leaf surface unit. When crop density increased to 250–300 plants/m2, the seed yield considerably rose (by 28.6–58.8%) as compared with the sparsest crop; when this index reached 300–350 plants/m2, the seed yield decreased because plant growth was suppressed, with the productivity reduced. The results thus obtained suggest that the photometric characteristics of spring rape were at optimum at crop density of 100–250 plants/m2. The agroclimatic conditions of Lithuania ensure potential for rapid accumulation of total biomass and high seed yield.  相似文献   

11.
Deficit irrigation has great significance for sustainable cultivation of cotton in water scarce arid regions, but this technique creates drought situation that induces stress adaptive changes in cotton plants due to indeterminate growth habit. In the present experiment, the impact of drought stress on assimilates partitioning associated vegetative and reproductive development, and yield quality attributes of cotton were examined under desert conditions. Four levels of drip irrigation including 100, 80, 60, and 40% replenishment of depleted water from field capacity were applied to develop drought stress regimes during two growing seasons (2015 and 2016). Results revealed that under limited water supplies, plant’s preference for allocation of photo-assimilates was roots?>?leaves?>?fruits that substantially increased root–shoot ratio and hampered reproductive growth. Consequently, boll density (m?2), fresh boll weight and lint yield (kg ha?1) were significantly reduced. An obvious change in partitioning of assimilates inside stressed bolls was observed that indicated relatively more accumulation in seeds than fiber, thus reducing the fiber quality. In addition, decreased starch, oil, and protein contents in seeds of stressed plants markedly reduced 100 seeds weight and also the vigor. Later, seed quality confirmatory tests of subsequent years (2016 and 2017) showed significant reduction in emergence counts (m?2) and seedling biomasses of seeds harvested from deficit drip irrigated cotton. These results suggest that deficit irrigation could necessarily be an appropriate yield optimization and water saving technique for cotton in desert environment but, for the best quality fiber and cottonseeds, full irrigation should be preferred.  相似文献   

12.
Root density distribution of plants is a major Indicator of competition between plants and determines resource capture from the solh This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossyplum hlrsutum L.) cultivars were chosen: hybrid Btcultlvar CRI46, conventional Btcultlvars CRI44 and CRI45. Six planting densities were designed, ranging from 1.5 to 12.0 plants/m^2. Root parameters such as surface area, diameter and length were analyzed by using the DT-SCAN Image analysis method. The root length density (RLD), root average diameter and root area Index (RAI), root surface area per unit land area, were studied. The results showed that RLD and RAI differed between genotypes; hybrid CRI46 had significantly higher (P 〈0.05) RLD and RAI values than conventlonal cultlvars, especially under low planting densities, less than 3.0 plants/m^2. The root area index (RAI) of hybrid CRI46 was 61% higher than of CRI44 and CRI45 at the flowering stage. The RLD and RAI were also significantly different (P = 0.000) between planting densities. The depth distribution of RAI showed that at Increasing planting densities RAI was Increasingly distributed in the soil layers below 50 cm. The RAI of hybrid CRI46 was for all planting densities, obviously higher than other cultivars during the flowering and boll stages. It was concluded that the hybrid had a strong advantage in root maintenance preventing premature senescence of roots. The root diameter of hybrid CRI46 had a genetically higher root diameter at planting densities lower than 6.0 plants/m^2. Good associations were found between yield and RAI In different stages. The optimum planting density ranged from 4.50 plants/m^2 to 6.75 plants/m^2 for conventional cultlvars and around 4.0-5.0 plants/m^2 for hybrids.  相似文献   

13.
Root systems of chaparral shrubs   总被引:3,自引:2,他引:3  
Summary Root systems of chaparral shrubs were excavated from a 70 m2 plot of a mixed chaparral stand located on a north-facing slope in San Diego County (32°54 N; 900 m above sea level). The main shrub species present were Adenostoma fasciculatum, Arctostaphylos pungens, Ceanothus greggii, Erigonum fasciculatum, and Haplopappus pinifolius. Shrubs were wired into their positions, and the soil was washed out beneath them down to a depth of approximately 60 cm, where impenetrable granite impeded further washing and root growth was severely restricted. Spacing and interweaving of root systems were recorded by an in-scale drawing. The roots were harvested in accordance to their depths, separated into diameter size classes for each species, and their dry weights measured. Roots of shrubs were largely confined to the upper soil levels. The roots of Eriogonum fasciculatum were concentrated in the upper soil layer. Roots of Adenostoma fasciculatum tended to be more superficial than those from Ceanothus greggii. It is hypothesized that the shallow soil at the excavation site impeded a clear depth zonation of the different root systems. The average dry weight root:shoot ratio was 0.6, ranging for the individual shrubs from 0.8 to 0.4. The root area always exceeded the shoot area, with the corresponding ratios ranging from 6 for Arctostaphylos pungens to 40 for Haplopappus pinifolius. The fine root density of 64 g dry weight per m2 under the canopy was significantly higher than in the unshaded area. However, the corresponding value of 45 g dry weight per m2 for the open ground is still high enough to make the establishment of other shrubs difficult.  相似文献   

14.
The effects of vesicular-arbuscular mycorrhizal (VAM) colonisation on phosphorus (P) uptake and growth of clover (Trifolium subterraneum L.) in response to soil compaction were studied in three pot experiments. P uptake and growth of the plants decreased as the bulk density of the soil increased from 1.0 to 1.6 Mg m-3. The strongest effects of soil compaction on P uptake and plant growth were observed at the highest P application (60 mg kg-1 soil). The main observation of this study was that at low P application (15 mg kg-1 soil), P uptake and shoot dry weight of the plants colonised by Glomus intraradices were greater than those of non-mycorrhizal plants at similar levels of compaction of the soil. However, the mycorrhizal growth response decreased proportionately as soil compaction was increased. Decreased total P uptake and shoot dry weight of mycorrhizal clover in compacted soil were attributed to the reduction in the root length. Soil compaction had no significant effect on the percentage of root length colonised. However, total root length colonised was lower (6.6 m pot-1) in highly compacted soil than in slightly compacted soil (27.8 m pot-1). The oxygen content of the soil atmosphere measured shortly before the plants were harvested varied from 0.18 m3m-3 in slightly compacted soil (1.0 Mg m-3) to 0.10 m3m-3 in highly compacted soil (1.6 Mg m-3).  相似文献   

15.
Ang  P. O.  Sharp  G. J.  Semple  R. E. 《Hydrobiologia》1993,260(1):321-326
The use of a Norwegian suction cutter to harvest populations of the brown alga Ascophyllum nodosum (L.) Le Jolis in southwestern Nova Scotia started in 1985. The impact of this type of mechanical harvest on the algal population structure was evaluated. Changes in the length and density of individual plants (clumps) within 0.25 m–2 quadrats, as well as the length of individual shoots within clumps were monitored before and after an experimental harvest. The mechanical harvest cut mainly the longer plants, thus changed the initial bimodal size structure of the population to unimodal. There was a 20 to 36% plant mortality, reducing the plant density from 92.6 to 73.6 individuals m–2. Pre-harvest size distribution of the tagged shoots was skewed to the right and became more normal after the harvest. Tagged shoots in the harvested quadrats suffered a 42% mortality as compared to 11% of those in the control quadrats. An understanding of the impact of the mechanical harvesting on the harvested population is essential in the design of a management strategy. Sources of variation in the impact of mechanical harvest include the tide level at time of harvest, length of time the machine operated in one site, skill of the machine operator, and sharpness of the machine cutting blades.  相似文献   

16.
Effect of soil compaction on root growth and uptake of phosphorus   总被引:9,自引:0,他引:9  
Summary Zea mays L. andLolium rigidum Gaud. were grown for 18 and 33 days respectively in pots containing three layers of soil each weighing 1 kg. The top and bottom layers were 100 mm deep and they had a bulk density of 1200 kg m–3, while the central layer of soil was compacted to one of 12 bulk densities between 1200 and 1750 kg m–3. The soil was labelled with32P and33P so that the contribution of the different layers of soil to the phosphorus content of the plant tops could be determined. Soil water potential was maintained between –20 and –100 kPa.Total dry weight of the plant tops and total root length were slightly affected by compaction of the soil, but root distribution was greatly altered. Compaction decreased root length in the compacted soil but increased root length in the overlying soil. Where bulk density was 1550 kg m–3, root length in the compacted soil was about 0.5 of the maximum. At that density, the penetrometer resistance of the soil was 1.25 and 5.0 MPa and air porosity was 0.05 and 0.14 at water potentials of –20 and –100 kPa respectively, and daytime oxygen concentrations in the soil atmosphere at time of harvest were about 0.1 m3m–3. Roots failed to grow completely through the compacted layer of soil at bulk densities 1550 kg m–3. No differences were detected in the abilities of the two species to penetrate compacted soil.Ryegrass absorbed about twice as much phosphorus from uncompacted soil per unit length of root as did maize. Uptake of phosphorus from each layer of soil was related to the length of root in that layer, but differences in uptake between layers existed. Phosphorus uptake per unit length of root was higher from compacted than from uncompacted soil, particularly in the case of ryegrass at bulk densities of 1300–1500 kg m–3.  相似文献   

17.
Jastrow  J.D.  Miller  R.M.  Owensby  C.E. 《Plant and Soil》2000,224(1):85-97
We determined the effects of elevated [CO2] on the quantity and quality of below-ground biomass and several soil organic matter pools at the conclusion of an eight-year CO2 enrichment experiment on native tallgrass prairie. Plots in open-top chambers were exposed continuously to ambient and twice-ambient [CO2] from early April through late October of each year. Soil was sampled to a depth of 30 cm beneath and next to the crowns of C4 grasses in these plots and in unchambered plots. Elevated [CO2] increased the standing crops of rhizomes (87%), coarse roots (46%), and fibrous roots (40%) but had no effect on root litter (mostly fine root fragments and sloughed cortex material >500 μm). Soil C and N stocks also increased under elevated [CO2], with accumulations in the silt/clay fraction over twice that of particulate organic matter (POM; >53 μm). The mostly root-like, light POM (density ≤1.8 Mg m-3) appeared to turn over more rapidly, while the more amorphous and rendered heavy POM (density >1.8 Mg m-3) accumulated under elevated [CO2]. Overall, rhizome and root C:N ratios were not greatly affected by CO2 enrichment. However, elevated [CO2] increased the C:N ratios of root litter and POM in the surface 5 cm and induced a small but significant increase in the C:N ratio of the silt/clay fraction to a depth of 15 cm. Our data suggest that 8 years of CO2 enrichment may have affected elements of the N cycle (including mineralization, immobilization, and asymbiotic fixation) but that any changes in N dynamics were insufficient to prevent significant plant growth responses. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Carrot seeds taken from the parent plant were capable of germinating before the stage when maximum seed dry weight was reached but even after this stage, when the seed moisture content had fallen below 20%, improvement in seed germination characteristics continued. In the latter stages of seed growth losses by shedding were 12–20 kg/ha/day. For low density crops (10 plants/m2) the yield of viable seed was at a maximum in crops whose seed was harvested with a moisture content of between 20 and 40% but no consistent relationship could be established for high density crops (80 plants/m2). There were no effects of umbel order or plant density on mean germination time or spread of germination. At any early harvest, percentage germination was highest for primary-umbel-seeds and seeds from low density crops but the differences between the seed origins diminished with later harvests. Drying the seeds on the umbels improved the percentage germination, reduced the mean germination time and the spread of germination particularly at the early harvests compared with seeds removed from the umbels and germinated immediately without drying.  相似文献   

19.
韩耀杰  张雪艳  马欣  纪翔 《生态学报》2019,39(20):7737-7744
碳捕集与封存(Carbon Capture and Storage,CCS)是应对全球气候变化、实现煤炭清洁利用的有效手段之一,但是地质封存的CO2存在泄漏的风险,可能对农田生态系统产生重大威胁,影响我国粮食安全。根系生长是地上部和地下部相互作用、相互促进的统一过程,其形态特征对作物生产力有显著影响,但CCS泄漏对植物根系的影响评估尚不多见。本文以玉米为研究对象,采用盆栽底部通入CO2的方法模拟不同CO2泄漏情景,研究CK(0 g m-2 d-1)和G1000(1000 g m-2 d-1)和G2000(2000 g m-2 d-1)三种泄漏情景下CO2对玉米根系形态的影响。结果表明:CO2泄漏对玉米根系形态有明显的影响,随着泄漏量的增大总根长从40290.81 cm减少至21448.18 cm,减少46.77%,其中细根大幅减少;CO2泄漏造成玉米明显减产,最大减产率达26.64%;玉米的地上部生物量较地下部生物量对CO2泄漏更加敏感。综合来看,随着CO2泄漏量增大,对玉米根的生长、地上部生物量、地下部生物量以及产量有显著的抑制作用。作物根系形态对封存CO2泄漏的响应可为CCS泄漏监测和生态修复提供系统科学依据。  相似文献   

20.
The apparent transfer of N from clover to associated grass was evaluated over a four year period both on the basis of harvested herbage and by taking account of changes in N in stubble and root (to 10 cm depth) in swards with perennial ryegrass and three different white clover cultivars differing in leaf size. The large leaved Aran transferred 15% of its nitrogen while Huia transferred 24% and the small leaved Kent Wild White transferred 34%. When changes in stubble and root N were taken into account the percentage of N transferred was calculated to be 5% less than in harvested herbage only, as the small leaved types had proportionately more N in the roots and stolons, but the large leaved type was probably more competitive towards the grass.Loss of N from clover roots from July to October was compared to that from grass roots in a grass/white clover sward continuously stocked with steers using a method which incorporated tissue turnover and 15N dilution techniques. Less than 1 mg N m-2 d-1 was lost from the grass roots. In contrast 8 mg m-2 d-1 were estimated to be lost from clover roots while 12 mg N m-2 d-1 were assimilated.It is concluded that clover cultivar and competitive ability on grass have to be taken into account together with the relationship between N turnover in roots and N available for grass growth when modelling N transfer in grass/clover associations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号