首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The presence of two sets of paired appendages is one of the defining features of jawed vertebrates. We are interested in identifying genetic systems that could have been responsible for the origin of the first set of such appendages, for their subsequent duplication at a different axial level, and/or for the generation of their distinct identities. It has been hypothesized that four genes of the T-box gene family (Tbx2Tbx5) played important roles in the course of vertebrate limb evolution. To test this idea, we characterized the orthologs of tetrapod limb-expressed T-box genes from a teleost, Danio rerio. Here we report isolation of three of these genes, tbx2, tbx4, and tbx5. We found that their expression patterns are remarkably similar to those of their tetrapod counterparts. In particular, expression of tbx5 and tbx4 is restricted to pectoral and pelvic fin buds, respectively, while tbx2 can be detected at the anterior and posterior margins of the outgrowing fin buds. This, in combination with conserved expression patterns in other tissues, suggests that the last common ancestor of teleosts and tetrapods possessed all four of these limb-expressed T-box genes (Tbx2Tbx5), and that these genes had already acquired, and have subsequently maintained, their gene-specific functions. Furthermore, this evidence provides molecular support for the notion that teleost pectoral and pelvic fins and tetrapod fore- and hindlimbs, respectively, are homologous structures, as suggested by comparative morphological analyses. Received: 14 July 1999 / Accepted: 4 September 1999  相似文献   

2.
The Xenopus Brachyury-like Xbra3 gene is a novel T-box gene that is closely associated with Xenopus Brachyury. The expression pattern of Xbra3 during development is similar to that of Xbra. During gastrulation Xbra3 is expressed in the marginal zone, with a gradient of increasing expression from ventral to dorsal. In the early neurula stage Xbra3 is expressed in the notochord and posterior mesoderm, but by the tailbud stage its expression is restricted to the forming tailbud and the posterior portion of the notochord.  相似文献   

3.
4.
 During a differential display-based screen for developmentally regulated genes in zebrafish, we have isolated a cDNA for zebrafish cathepsin L, termed catL. The gene shows abundant expression in the anteriormost cells of the head process which give rise to the polster and later to the hatching gland. Expression of catL persists in these tissues until hatching. catL thus provides a useful marker for very anterior mesendodermal structures in zebrafish. Received: 23 September 1996/Accepted: 29 October 1996  相似文献   

5.
T-box genes are conserved in all animal species. We have identified two members of the T-box gene family from the zebrafish, Danio rerio. Zf-tbr1 and zf-tbx3 share high amino acid identity with human, murine, chick and Xenopus orthologs and are expressed in specific regions during zebrafish development.  相似文献   

6.
Notch genes encode transmembrane receptors that interact with numerous signal transduction pathways and are essential for animal development. To facilitate analysis of vertebrate Notch gene function, we isolated cDNA fragments of three novel Notch genes from zebrafish (Danio rerio), Notch1b, Notch5 and Notch6. Notch1b is a second zebrafish Notch1 gene. From analysis of the Notch1b sequence we argue that the various vertebrate Notch gene subfamilies encode receptors with different signalling specificities. Notch5 and Notch6 represent novel vertebrate Notch gene subfamilies. Remarkably, Notch1b lacks expression in presomitic mesoderm, Notch5 is expressed in a metameric pattern within the presomitic mesoderm whilst Notch6 expression is excluded from the nervous system. The expression patterns of these genes suggest important roles in gastrulation, somitogenesis, tail bud extension, myogenesis, heart development and neurogenesis. We discuss the implications of our observations for Notch gene evolution and function. Received: 20 January 1997 / Accepted: 12 February 1997  相似文献   

7.
 The vertebrate Hox genes have been shown to confer regional identity along the anteroposterior axis of the developing embryo, especially within the central nervous system (CNS) and the paraxial mesoderm. The notochord has been shown to play vital roles in patterning adjacent tissues along both the dorsoventral and mediolateral axes. However, the notochord’s role in imparting anteroposterior information to adjacent structures is less well understood, especially as the notochord shows no morphological distinctions along the anteroposterior axis and is not generally described as a segmental or compartmentalized structure. Here we report that four zebrafish hox genes: hoxb1, hoxb5, hoxc6 and hoxc8 are regionally expressed along the anteroposterior extent of the developing notochord. Notochord expression for each gene is transient, but maintains a definite, gene-specific anterior limit throughout its duration. The hox gene expression in the zebrafish notochord is spatially colinear with those genes lying most 3’ in the hox clusters having the most anterior limits. The expression patterns of these hox cluster genes in the zebrafish are the most direct molecular evidence for a system of anteroposterior regionalization of the notochord in any vertebrate studied to date. Received: 30 March 1998 / Accepted: 16 June 1998  相似文献   

8.
9.
10.
11.
12.
 Proteins encoded by the Wnt family of genes act as signals and have been shown to play important roles in a wide variety of developmental processes. Here we describe the cloning of three Wnt family members from the zebrafish, Danio rerio, which encode proteins with homology to murine Wnt-2, -4 and -5A/B. The expression patterns of the latter two zebrafish genes, designated ZfWnt4 and ZfWnt5 show considerable similarity with their homologues in other vertebrates; ZfWnt2, however, is expressed in the developing viscera in a pattern distinct from its closest murine homologue. In the light of the similarities and differences in the patterns of expression of these genes relative to their homologues in other vertebrates, we speculate on their possible functions. Received 24 October 1995 / Accepted in revised form: 16 January 1996  相似文献   

13.
14.
The Hox code of jawed vertebrates is characterized by the colinear and rostrocaudally nested expression of Hox genes in pharyngeal arches, hindbrain, somites, and limb/fin buds. To gain insights into the evolutionary path leading to the gnathostome Hox code, we have systematically analyzed the expression pattern of the Hox gene complement in an agnathan species, Lethenteron japonicum (Lj). We have isolated 15 LjHox genes and assigned them to paralogue groups (PG) 1-11, based on their deduced amino acid sequences. LjHox expression during development displayed gnathostome-like spatial patterns with respect to the PG numbers. Specifically, lamprey PG1-3 showed homologous expression patterns in the rostral hindbrain and pharyngeal arches to their gnathostome counterparts. Moreover, PG9-11 genes were expressed specifically in the tailbud, implying its posteriorizing activity as those in gnathostomes. We conclude that these gnathostome-like colinear spatial patterns of LjHox gene expression can be regarded as one of the features already established in the common ancestor of living vertebrates. In contrast, we did not find evidence for temporal colinearity in the onset of LjHox expression. The genomic and developmental characteristics of Hox genes from different chordate species are also compared, focusing on evolution of the complex body plan of vertebrates.  相似文献   

15.
The first morphological sign of vertebrate postcranial body segmentation is the sequential production from posterior paraxial mesoderm of blocks of cells termed somites. Each of these embryonic structures is polarized along the anterior/posterior axis, a subdivision first distinguished by marker gene expression restricted to rostral or caudal territories of forming somites. To better understand the generation of segment polarity in vertebrates, we have studied the zebrafish mutant fused somites (fss), because its paraxial mesoderm lacks segment polarity. Previously examined markers of caudal half-segment identity are widely expressed, whereas markers of rostral identity are either missing or dramatically down-regulated, suggesting that the paraxial mesoderm of the fss mutant embryo is profoundly caudalized. These findings gave rise to a model for the formation of segment polarity in the zebrafish in which caudal is the default identity for paraxial mesoderm, upon which is patterned rostral identity in an fss-dependent manner. In contrast to this scheme, the caudal marker gene ephrinA1 was recently shown to be down-regulated in fss embryos. We now show that notch5, another caudal identity marker and a component of the Delta/Notch signaling system, is not expressed in the paraxial mesoderm of early segmentation stage fss embryos. We use cell transplantation to create genetic mosaics between fss and wild-type embryos in order to assay the requirement for fss function in notch5 expression. In contrast to the expression of rostral markers, which have a cell-autonomous requirement for fss, expression of notch5 is induced in fss cells at short range by nearby wild-type cells, indicating a cell-non-autonomous requirement for fss function in this process. These new data suggest that segment polarity is created in a three-step process in which cells that have assumed a rostral identity must subsequently communicate with their partially caudalized neighbors in order to induce the fully caudalized state.  相似文献   

16.
 The molecular signalling mechanisms that are believed to govern the patterning of the heart early in embryonic development are not well understood. We have investigated the events which occur during patterning of the vertebrate heart by exposing gastrula stage zebrafish embryos to lithium, which is known to affect the phosphoinositol signalling pathway. Treatment of embryos at 50% epiboly (5.25 h after fertilization at 28.5°C) with 0.3 m LiCl for 5–15 min, results in embryos with defects which range from mild to severe, depending on the length of time the embryos are exposed to lithium. In the heart, defects appear progressively in the inflow tract, the sinus venosus and atrium. By using an antibody that recognizes an atrium-specific isoform of myosin, our results show that lithium treatment at gastrulation specifically affects the atrium and sinus venosus, and has little obvious effect on the ventricle. Defects induced by lithium differ from those induced by retinoic acid (RA) treatment of similarly staged embryos, and suggest that lithium and RA may affect the patterning signals important for establishment of the vertebrate heart by acting on different populations of cells or by influencing different patterning pathways. Received: 8 December 1995 / Accepted: 11 April 1996  相似文献   

17.
18.
19.
 The Sox family of proteins is thought to act to regulate gene expression in a wide variety of developmental processes. Here we describe the cloning of sox30, a novel sox gene from the zebrafish (Danio rerio). In situ hybridization shows that sox30 is expressed in a restricted manner at the boundary between the midbrain and hindbrain during nervous system development. This expression pattern is in direct contrast to that of most other neuronally expressed Sox genes which are expressed throughout the nervous system. Received: 30 October 1998 / Accepted: 1 February 1999  相似文献   

20.
 Mutations causing a visible phenotype in the adult serve as valuable visible genetic markers in multicellular genetic model organisms such as Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana. In a large scale screen for mutations affecting early development of the zebrafish, we identified a number of mutations that are homozygous viable or semiviable. Here we describe viable mutations which produce visible phenotypes in the adult fish. These predominantly affect the fins and pigmentation, but also the eyes and body length of the adult. A number of dominant mutations caused visible phenotypes in the adult fish. Mutations in three genes, long fin, another long fin and wanda affected fin formation in the adult. Four mutations were found to cause a dominant reduction of the overall body length in the adult. The adult pigment pattern was found to be changed by dominant mutations in wanda, asterix, obelix, leopard, salz and pfeffer. Among the recessive mutations producing visible phenotypes in the homozygous adult, a group of mutations that failed to produce melanin was assayed for tyrosinase activity. Mutations in sandy produced embryos that failed to express tyrosinase activity. These are potentially useful for using tyrosinase as a marker for the generation of transgenic lines of zebrafish. Received: 17 June 1996 / Accepted: 15 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号