首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chalcone synthase activity catalyzing the formation of naringenin (5-hydroxyflavanone) was detected in cell suspension cultures of Glycyrrhiza echinata. This activity rapidly increased by treatment of the cells with yeast extract, while non-treated cells showed a constant low activity. Isolated G. echinata protoplasts accumulated retrochalcone (echinatin) and its biosynthetic intermediate (licodione) during 24 h of culture. When the protoplasts were incubated with [14C(U)]phenylalanine, liquiritigenin (5-deoxyflavanone) was transiently labeled, indicating the induction of 6'-deoxychalcone synthase. The formation of liquiritigenin, in addition to naringenin, was observed when the crude extracts from the protoplasts were assaved for CHS activity.Abbreviations CHS chalcone synthase - YE yeast extract This paper is Part 52 in the series Studies on Plant Tissue Cultures. For Part 51, see Furuya T, Ushiyama M, Asada Y, Yoshikawa T, Orihara Y (1987) Phytochemistry: in press.  相似文献   

2.
The activity of NAD(P)H-dependent glutamate synthase (E.C. 1.4.1.14) has been demonstrated in extracts from etiolated shoots of pea (Pisum sativum L.) and barley (Hordeum vulgare L.). This activity does not significantly alter upon greening of the etiolated shoots, and is at a similar level in light-grown material. Ferredoxin-dependent glutamate synthase (E.C. 1.4.7.1) has low activity in etiolated shoots but increases rapidly on greening. In light grown leaves ferredoxin-dependent activity is 30–40-fold higher than NAD(P)H-dependent activity. It is not considered that the NAD(P)H-dependent glutamate synthase plays an important role in ammonia assimilation in the photosynthetic tissue of higher plants.  相似文献   

3.
Xylose reductase from the xylose-fermenting yeast Pichia stipitis was purified to electrophoretic and spectral homogeneity via ion-exchange, affinity and high-performance gel chromatography. The enzyme was active with various aldose substrates, such as DL-glyceraldehyde, L-arabinose, D-xylose, D-ribose, D-galactose and D-glucose. Hence the xylose reductase of Pichia stipitis is an aldose reductase (EC 1.1.1.21). Unlike all aldose reductases characterized so far, the enzyme from this yeast was active with both NADPH and NADH as coenzyme. The activity with NADH was approx. 70% of that with NADPH for the various aldose substrates. NADP+ was a potent inhibitor of both the NADPH- and NADH-linked xylose reduction, whereas NAD+ showed strong inhibition only with the NADH-linked reaction. These results are discussed in the context of the possible use of Pichia stipitis and similar yeasts for the anaerobic conversion of xylose into ethanol.  相似文献   

4.
Yeast extract-treated suspension cultures of a new cell line, AK-1, of Glycyrrhiza echinata were induced to produce an isoflavonoid phytoalexin (medicarpin) and metabolites of retrochalcone/flavone pathway (echinatin, licodione, and 7,4'-dihydroxyflavone). From these cells, putative full-length cDNAs encoding cytochrome P450s, (2S)-flavanone 2-hydroxylase and isoflavone 2'-hydroxylase, were cloned.  相似文献   

5.
Three O-methyltransferases which catalyze S-adenosyl-L-methionine (SAM)-dependent O-methylation of licodione (LMT), flavone/flavonol (FMT), and caffeic acid (CMT) were separated from the callus culture of Glycyrrhiza echinata, and characteristic differences between their pH optima and Mg2+ requirement for activity were demonstrated. The activity of LMT, which is involved in retrochalcone (echinatin) biosynthesis, but not of FMT or CMT, was found to be stimulated when suspension-cultured G. echinata cells were treated with yeast extract (YE), which causes rapid production of echinatin in the cells. Cycloheximide suppressed both the YE-induced echinatin formation and LMT enhancement. The results indicate a selective induction of retrochalcone pathway in Glycyrrhiza cells in response to stress.Abbreviations SAM S-adenosyl-L-methionine - LMT, SAM licodione 2-O-methyltransferase - FMT, SAM flavone/flavonol O-methyltransferase - CMT, SAM caffeate 3-O-methyltransferase - OMT O-methyltransferase - CH cycloheximide - YE yeast extract This paper is Part 47 in the series Studies on Plant Tissue Cultures. For Part 46, see Ayabe S, Iida K, Furuya T (1986) Phytochemistry: in press  相似文献   

6.
The soluble enzymatic luminescent system of the dinoflagellate Pyrocystis lunula (luciferase-luciferin) is coupled with an enzymatic NAD(P)H-dependent reaction. The enzyme is a soluble reductase (Mr 47,000) which catalyzes, in the presence of NAD(P)H, the reduction of a molecule called P630. Reduced P630 has the same spectral characteristics as the purified luciferin. The luciferase can oxidize this reduced molecule with a light emission at 480 nm. These observations suggest that reduced P630 is a luciferin molecule. The oxidized form seems, in these conditions, to be the precursor of luciferin.  相似文献   

7.
8.
Transfer into a fresh medium or immobilization by entrapment in calcium alginate gels of cultured Glycyrrhiza echinata cells caused a rapid and transient accumulation of a retrochalcone, echinatin, in both the cells and the medium. The higher level and longer duration of echinatin production was observed in the immobilized cells than in freely suspended cells. Transfer of the cells into the medium containing either sodium alginate or calcium chloride, and the addition of sodium alginate into the suspension culture, caused the same effect as observed in cell immobilization. A novel metabolite was also detected in the induced cells. Activities of the enzymes involved in echinatin biosynthesis were shown to rapidly increase by immobilization of the cells.Abbreviations IAA indole-3-acetic acid - LMT S-adenosylmethionine: licodione 2-O-methyltransferase - CHS chalcone synthase  相似文献   

9.
In Dictyostelium discoideum (D. discoideum), compounds generating nitric oxide (NO) inhibit its aggregation and differentiation without altering cyclic guanosine monophosphate (cGMP) production. They do it by preventing initiation of cyclic adenosine monophosphate (cAMP) pulses. Furthermore, these compounds stimulate adenosine diphosphate (ADP)-ribosylation of a 41 kDa cytosolic protein and regulate the glyceraldehyde-3-phospate dehydrogenase activity. Yet, although D. discoideum cells produce NO at a relatively constant rate at the onset of their developmental cycle, there is still no evidence of the presence of nitric oxide synthase (NOS) enzymes. In this work, we detect the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity in D. discoideum and we characterise it by specific inhibitors and physical-chemical conditions that allegedly distinguish between NOS-related and -unrelated NADPH-d activity.Key words: NADPH-diaphorase activity, protozoa, nitric oxide synthase.  相似文献   

10.
The possibility that 12-keto-5,8,10,14 eicosatetraenoic acid (12-KETE) could be used as substrate by reductase(s) to generate 12-hydroxyeicosatetraenoic acid (12-HETE) was investigated using rat liver microsomes as a source of enzyme activity. Microsomes catalyzed the time-dependent reduction of 12-KETE to 12-HETE in a reaction that required NAD(P)H. The maximal specific activity of 12-HETE formation was 1.7 nmol/min/mg of protein in the presence of NADH. The reaction could not be detected in the absence of cofactor or by using heat inactivated microsomes. The identity of the 12-HETE product was established by U.V. spectroscopy and co-elution with 12-HETE in two different systems of RP-HPLC. Resolution of the methyl esters of reaction products by chromatography on chiral columns also indicated that the reduction of 12-KETE with either NADPH or NADH generated a mixture of 12(S)- and 12(R)-HETE in a ratio of about 2:1. The results demonstrate the presence of a 12-KETE reductase activity in rat liver microsomes which can form both the R and S isomers of 12-HETE.  相似文献   

11.
A purely chemical system for NAD(P)H oxidation to biologically active NAD(P)+ has been developed and characterized. Suitable amounts of EDTA, manganous ions and mercaptoethanol, combined at physiological pH, induce nucleotide oxidation through a chain length also involving molecular oxygen, which eventually undergoes quantitative reduction to hydrogen peroxide. Mn2+ is specifically required for activity, while both EDTA and mercaptoethanol can be replaced by analogs. Optimal molar ratios of chelator/metal ion (2:1) yield an active coordination compound which catalyzes thiol autoxidation to thiyl radical. The latter is further oxidized to disulfide by molecular oxygen whose one-electron reduction generates superoxide radical. Superoxide dismutase (SOD) inhibits both thiol oxidation and oxygen consumption as well as oxidation of NAD(P)H if present in the mixture. A tentative scheme for the chain length occurring in the system is proposed according to stoichiometry of reactions involved. Two steps appear of special importance in nucleotide oxidation: (a) the supposed transient formation of NAD(P). from the reaction between NAD(P)H and thiyl radicals; (b) the oxidation of the reduced complex by superoxide to keep thiol oxidation cycling.  相似文献   

12.
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes in different tissues. Angiotensin-II (Ang-II) is involved in the fibrotic response. Several muscular dystrophies are characterized by extensive fibrosis. However, the exact role of Ang-II in skeletal muscle fibrosis is unknown. Here we show that myoblasts responded to Ang-II by increasing protein levels of connective tissue growth factor (CTGF/CCN2), collagen-III and fibronectin. These Ang-II-induced pro-fibrotic effects were mediated by AT-1 receptors. Remarkably, Ang-II induced reactive oxygen species (ROS) via a NAD(P)H oxidase-dependent mechanism, as shown by inhibition of ROS production via the NAD(P)H oxidase inhibitors diphenylene iodonium (DPI) and apocynin. This increase in ROS is critical for Ang-II-induced fibrotic effects, as indicated by the decrease in Ang-II-induced CTGF and fibronectin levels by DPI and apocynin. We also show that Ang-II-induced ROS production and fibrosis require PKC activity as indicated by the generic PKC inhibitor chelerythrine.These results strongly suggest that the fibrotic response induced by Ang-II is mediated by AT-1 receptor and requires NAD(P)H-induced ROS in skeletal muscle cells.  相似文献   

13.
The relationship between the plasma membrane bound NAD(P)H-nitratereductase (NR) and a plasma membrane (PM)-bound peroxidase wasinvestigated using highly purified PM vesicles isolated fromcorn roots. The PM-bound NR activity was strongly enhanced byMnCl2 and SHAM, which stimulated peroxidase activity. Sinceboth activities, the NAD(P)H-dependent NR and the peroxidasecompete for NAD(P)H as electron donor, we propose a model inwhich a product of peroxidation is able to offer electrons tothe nitrate reductase in a more reactive form with respect toNAD(P)H.Our hypothesis was confirmed by experiments in which the effectsof inhibitors of peroxidative reactions, catalase, superoxidedismutase, and ascorbate on the PM-bound NR were studied. Resultsindicate that the putative electron donor for nitrate reductioncould be a radicalic species, possibly NAD. Furthermore, sincecytochrome c decreased the activity of the plasma membrane-boundNAD(P)Hdependent NR, cytochrome b557 might be the site of theenzyme accepting electrons from NAD. Our results indicate that the PM environment of the NR may beinvolved in the extent of the membrane associated nitrate reductionand that redox enzymes at the PM, the NAD(P)H-NR and a peroxidase-likeNADH-oxidase, can interact. Key words: Plasma membrane-bound nitrate reductase, peroxidase, Zea mays  相似文献   

14.
15.
Yan F  Munos JW  Liu P  Liu HW 《Biochemistry》2006,45(38):11473-11481
(S)-2-Hydroxypropylphosphonic acid epoxidase (HppE) catalyzes the epoxide ring closure of (S)-HPP to form fosfomycin, a clinically useful antibiotic. Early investigation showed that its activity can be reconstituted with Fe(II), FMN, NADH, and O2 and identified HppE as a new type of mononuclear non-heme iron-dependent oxygenase involving high-valent iron-oxo species in the catalysis. However, a recent study showed that the Zn(II)-reconstituted HppE is active, and HppE exhibits modest affinity for FMN. Thus, a new mechanism is proposed in which the active site-bound Fe2+ or Zn2+ serves as a Lewis acid to activate the 2-OH group of (S)-HPP and the epoxide ring is formed by the attack of the 2-OH group at C-1 coupled with the transfer of the C-1 hydrogen as a hydride ion to the bound FMN. To distinguish between these mechanistic discrepancies, we re-examined the bioautography assay, the basis for the alternative mechanism, and showed that Zn(II) cannot replace Fe(II) in the HppE reaction and NADH is indispensable. Moreover, we demonstrated that the proposed role for FMN as a hydride acceptor is inconsistent with the finding that FMN cannot bind to HppE in the presence of substrate. In addition, using a newly developed HPLC assay, we showed that several non-flavin electron mediators could replace FMN in the HppE-catalyzed epoxidation. Taken together, these results do not support the newly proposed "nucleophilic displacement-hydride transfer" mechanism but are fully consistent with the previously proposed iron-redox mechanism for HppE catalysis, which is unique within the mononuclear non-heme iron enzyme superfamily.  相似文献   

16.
We tested the hypothesis that the NAD(P)H oxidase-dependent generation of superoxide anion (O2-*) mediates tumor necrosis factor-alpha (TNF)-induced alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin. The NAD(P)H oxidase subcomponents p47phox and p22phox were assessed by immunofluorescent microscopy and Western blot. The reactive oxygen species O2-* was measured by the fluorescence of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetatedi(acetoxymethyl ester), 5 (and 6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-acetyl ester, and dihydroethidium. TNF treatment (50 ng/ml for 4.0 h) induced 1) p47phox translocation, 2) an increase in p22phox protein, 3) increased localization of p47phox with p22phox, 4) O2-* generation, and 5) increased permeability to albumin. p22phox antisense oligonucleotide prevented the TNF-induced effect on p22phox, p47phox, O2-*, and permeability. The scrambled nonsense oligonucleotide had no effect. The TNF-induced increase in O2-* and permeability to albumin was also prevented by the O2-* scavenger Cu-Zn superoxide dismutase (100 U/ml). The results indicate that the activation of NAD(P)H oxidase, via the generation of O2-*, mediates TNF-induced barrier dysfunction in PMEM.  相似文献   

17.
1.
1. Normoxia-anoxia transitions and use of glycolytic inhibitors and substrates have made possible a distinction between NAD(P)H redox changes in the mitochondrial and cytosolic compartments of ELD (Ehrlich-Lettré hyperdiploid) ascites tumour cells.  相似文献   

18.
The production of superoxide radical (O2) was studiedin plasma membrane vesicles isolated by aqueous polymer two-phasepartitioning from roots of zinc-sufficient and zinc-deficientbean (Phaseolus vulgaris L. cv. Prélude) plants. Thetwo populations of vesicles were highly enriched in plasma membraneand had similar composition as evidenced by the specific membranemarker enzymes. Vesicles from zinc-deficient roots showed higherrates of NAD(P)H oxidation compared to vesicles from zinc-sufficientplants. The NAD(P)H-dependent formation of O2 in plasmamembrane vesicles was also highly increased by zinc deficiency.For both activities, a higher response to zinc deficiency wasobserved when NADPH was used as electron source. Re-supply ofzinc to deficient plants for 24 h substantially decreased therates of NAD(P)H oxidation and 02 production in isolatedvesicles. The NADPH-dependent O2 generation was stronglystimulated by FAD and showed a high pH optimum; it was scarcelyaffected by Triton X-100 or even inhibited in the presence ofFAD and was almost insensitive to Antimycin A. The results suggest the presence at the plasma membrane of beanroots of an O2 generating activity, preferentially utilizingNADPH, which is affected by the zinc nutritional status of theplant. This finding, together with previous observations oncytosolic and microsomal fractions prepared from zinc-deficientroots of different plants, is consistent with a role of zincin membrane stabilization by controlling the level of oxidizingO2 species. Key words: NAD(P)H oxidase, superoxide radical, plasma membrane, zinc deficiency  相似文献   

19.
NAD(P)H-dependent d-xylose reductase is a homodimeric oxidoreductase that belongs to the aldo-keto reductase superfamily. The enzyme has the special function to catalyze the first step in the assimilation of xylose into yeast metabolic pathways. Performing this function via reducing the open chain xylose to xylitol, the xylose reductase of Pichia stipitis is one of the most important enzymes that can be used to construct recombinant Saccharomyces cerevisiae strain for utilizing xylose and producing alcohol. To investigate into the interaction mechanism of the enzyme with its ligand NAD and NADP, the 3D structure was developed for the NAD(P)H-dependent d-xylose reductase from P. stipitis. With the 3D structure, the molecular docking operations were conducted to find the most stable bindings of the enzyme with NAD and NADP, respectively. Based on these results, the binding pockets of the enzyme for NAD and NADP have been explicitly defined. It has been found that the residues in forming the binding pockets for both NAD and NADP are almost the same and mainly hydrophilic. These findings may be used to guide mutagenesis studies, providing useful clues to modify the enzyme to improve the utilization of xylose for producing alcohol. Also, because human aldose reductases have the function to reduce the open chain form of glucose to sorbitol, a process physiologically significant for diabetic patients at the time that their blood glucose levels are elevated, the information gained through this study may also stimulate the development of new strategies for therapeutic treatment of diabetes.  相似文献   

20.
An NAD(P)H-dependent H2O2 forming activity has been evidenced in thyroid tissue from patients with Grave's disease. Its biochemical properties were compared to those of the NADPH oxidase previously described in pig thyroid gland. Both were Ca2+-dependent and activated by inorganic phosphate anions in the same range of concentrations. Both are flavoproteins using FAD as cofactor, but the human enzyme was also able to utilize FMN. The apparent Km for NADPH of the human enzyme (100 microM) was 5-10 times higher than that of porcine enzyme. Vm was 3 to 10 times higher in pig (150 nmol x h(-1) x mg(-1)) than in man (14 to 45). Total content in human tissue was 7 to 9% of that in porcine tissue. An unidentified inhibitor has been detected in the 3000 g particulate fraction from most patients, which could account for this apparently low enzyme content. An NADH-dependent H2O2 production has also been observed in porcine and human thyroid tissues. This activity was only partly Ca2+-dependent (man, 50-70%; pig, 80-90%) and presented similar apparent Km values for NADH (man, 100 microM; pig, 200 microM). In pig thyrocytes, the expression of the Ca2+-dependent part of the NADH-oxidase activity was induced by TSH and down-regulated by TGFbeta, as was the NADPH oxidase activity. Furthermore, NADPH and NADH-dependent activities were not additive. We conclude that a single, inducible, NAD(P)H-oxidase can use NADPH or NADH as substrate to catalyse H2O2 formation, and that human and porcine NAD(P)H-oxidases are highly similar. Differences observed could be attributed to minor differences in enzyme structure and/or in membrane microenvironment. The NADH-dependent Ca2+-independent activity observed in human and porcine thyroid fractions could be attributed to a distinct and constitutive enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号