首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weak magnetic and electromagnetic fields affect physiological processes in animals, plants, and microorganisms. Ion cyclotron resonance (ICR) is discussed as one of the sensitive mechanisms, which enable perception of the geomagnetic field and its orientation. Numerous biological effects are observed involving several small ions, showing windows of predicted frequencies and intensities. The pioneering work of Guiliano Preparata and Emilio Del Giudice using quantum electrodynamics showed that spontaneously originating coherent regions in water facilitate ICR effects at incoherent water phase boundaries. Here we examine the ICR response of the calcium ion (Ca2+), crucial for many life processes. We use an aqueous solution containing the biologically ubiquitous membrane lipid L-α-phosphatidylcholine that serves as a biomimetic proxy for dynamic light scattering (DLS) and nonlinear dielectric spectroscopy (NLDS) measurements. One notable result is that this system approaches a new equilibrium upon addition of calcium by means of the oscillatory Belousov–Zhabotinsky chemical reaction, oscillations are significantly reduced under Ca2+ ICR application. Secondly an “oscillator” of calcium ions appears to be able to itself couple coherently and predictably to large-scale coherent regions in water. This system appears able to regulate ion fluxes in response to very weak environmental electromagnetic fields.  相似文献   

2.
Antheridia and Archegonia of the Apogamous Fern Pteris cretica   总被引:1,自引:0,他引:1  
LAIRD  S.; SHEFFIELD  E. 《Annals of botany》1986,57(2):139-143
The external appearance of gametophytes and gametangia of Pteriscretica closely resembled those of sexually reproducing ferns.Antheridia were fully functional but archegonia were not. Despitethe formation of egg, ventral and neck canal cells, the flask-shapedarchegonia failed to open and Pteris spermatozoids failed toexhibit a chemotactic response to them. Cryo SEM revealed thatthe topmost cells of mature archegonia had collapsed, and thisis thought to account for the loss of archegonial function. Pteris cretica, fern, apogamy, antheridia, archegonia, cryo SEM  相似文献   

3.
SYNOPSIS. Locomotor behavior in the ciliate protozoa is controlled by the cell membrane through electrophysiological principles already familiar in receptor, nerve, and effector cells of the metazoa. This is illustrated by the avoiding reaction (15). When the membrane of the anterior part of the ciliate receives a mechanical stimulus, as during collision, it permits a local influx of Ca++. This constitutes a receptor current which depolarizes the remaining cell membrane by electrotonic spread. Depolarization causes a secondary transient increase in the calcium conductance of the entire cell membrane, and a general influx of Ca++ occurs. The resulting increase in concentration of intracellular Ca++ activates a reorientation (“reversal”) of the ciliary power stroke, causing the organism to swim backward. Forward locomotion is restored as the resting concentration of intracellular Ca++ in the cell cortex is restored by diffusion, active extrusion, or intracellular sequestering. The control and coordination of locomotion in ciliates depend on several factors in addition to the excitable properties of the membrane. These include the sensitivities of the ciliary apparatus to intracellular concentrations of calcium and other regulating substances, the anatomical distribution of sensory receptor properties of the cell membrane, and the cable properties of the cell which permit electrotonic spread of graded potential signals without need of all-or-none conducted signals.  相似文献   

4.
The rat’s ability to vary its whisking “strategies” to meet the functional demands of a discriminative task suggests that whisking may be characterized as a “voluntary” behavior—an operant—and like other operants, should be modifiable by appropriate manipulations of response–reinforcer contingencies. To test this hypothesis we have used high-resolution, optoelectronic “real-time” recording procedures to monitor the movements of individual whiskers and reinforce specific movement parameters (amplitude, frequency). In one operant paradigm (N = 9) whisks with protractions above a specified amplitude were reinforced (Variable Interval 30?s) in the presence of a tone, but extinguished (EXT) in its absence. In a second paradigm (N = 3), rats were reinforced on two different VI schedules (VI-20s/VI-120s) signaled, respectively, by the presence or absence of the tone. Selective reinforcement of whisking movements maintained the behavior over many weeks of testing and brought it under stimulus and schedule control. Subjects in the first paradigm learned to increase responding in the presence of the tone and inhibit responding in its absence. In the second paradigm, subjects whisked at significantly different rates in the two stimulus conditions. Bilateral deafferentation of the whisker pad did not impair conditioned whisking or disrupt discrimination behavior. Our results confirm the hypothesis that rodent whisking has many of the properties of an operant response. The ability to bring whisking movement parameters under operant control should facilitate electrophysiological and lesion/behavioral studies of this widely used “model” sensorimotor system.  相似文献   

5.
Epstein , Emanuel . (U. California, Davis.) Spaces, barriers, and ion carriers: ion absorption by plants. Amer. Jour. Bot. 47(5) : 393—399. 1960.—Ions from the external medium initially invade “outer” or “free” spaces of plant cells and tissues, by diffusion and ion exchange. This process is essentially non-metabolic and non-selective, and is readily reversible. The spaces accessible in this manner seem to be confined to the cell walls. From here, ions are selectively transported into “inner” spaces separated from the “outer” space by diffusion barriers. Ion carriers accomplish the selective transfer of the ions across the barriers or membranes, first into the cytoplasm and thence into the vacuole. The second step, into the vacuole, can be by-passed by those ions moving into the xylem elements and up to the shoot, and some transport to the shoot may skirt the active transport mechanisms entirely.  相似文献   

6.
Spermatozoid-forming cells of Coleochaete scutata were found in packets of four arranged in concentric internal bands. Spermatozoids, which occur singly in antheridial cells, are spherical to ovoid, approximately 7 μm long by about 3.9 μm wide. As compared to relatively unspecialized zoospores, male gametes undergo a number of specialized cellular changes during development. The spherical nuclei and cytoplasm of mature spermatozoids are increased in density. Posterior plastids are reduced and contain large starch grains. Many small mitochondria are clustered near the cell anterior. The plasmalemma is covered with a layer of flattened, diamond-shaped scales, while body scales of zoospores are pyramidal. The two flagella of both zoospores and spermatozoids are covered with flattened, diamond-shaped scales and hairs. The spermatozoids contain an anterior multilayered structure (MLS) structurally similar to, though smaller than, the MLS observed in zoospores. An asymmetrical cytoskeleton consisting of a band of 30–45 microtubules extends from the MLS down one side of the spermatozoid close to the plasmalemma. An immature MLS was observed in an early stage of spermatozoid development. The finding of an MLS and asymmetrical cytoskeleton in specialized male gametes as well as relatively unspecialized zoospores of Coleochaete strengthens assumptions of homology between MLSs of green algal reproductive cells and those found in flagellated spermatozoids of archegoniate plants. The structure of the spermatozoid of Coleochaete supports the hypothesis that this alga may be relatively close to the phylogenetic line which led directly to archegoniates.  相似文献   

7.
Adaptation of Ehrlich ascites tumor cells to serial cultivation in media with progressively elevated (hypertonic) NaCl content (“high NaCl”-tolerant cells) has resulted in progressive increases of the cellular activities of NAD-dependent glycerol-3-phosohate dehydrogenase (EC 1.1.1.8), NAD-dependent malate dehydrogenase (EC 1.1.1.37), glutamate—oxalacetate transaminase (EC 2.6.1.1.), NAD(P)-dependent glutamate dehydrogenase (EC 1.4.1.3), NADP-dependent malate dehydrogenase (EC 1.1.1.40, “malic enzyme”) and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.42). The activities of glutamate—pyruvate transaminase (EC 2.6.1.2.) and of glycolytic enzymes as phosphofructokinase (EC 2.7.1.11), glyceradehydephosphate dehydrogenase (EC 1.2.1.12) and lactate dehydrogenase (EC 1.1.1.27) were only slightly and not in progressive manner (in response to the progressive increase of the environmental NaCl concentration) affected. These changes are discussed with respect to a metabolic pattern of these “high NaCl”-tolerant cells which is compatible with increased energy requirements, especially for active cation transport. It is suggested that these increased cellular enzyme activitees reflect an increased transfer of reducing equivalents across mitochondrial membranes (via the “glycerophosphate cycle and the malate—aspartate shuttle”) and possibly a stimulated lipid metabolism. These alterations in the level of enzyme activities must be regarded as an adaptive cellular response to the “high NaCl” enviromment, since readaptation to growth in regular isotonic media resulted in a reversion to the enzyme pattern characteristic of the parent cells.  相似文献   

8.
A general theory of the molecular structure of receptors for transmitters based only on protein has been presented elsewhere (Smythies, 1974a,b). The acetylcholine receptor at the neuromuscular junction is postulated in particular to be based on a Kusnetsov-Ghokov grid with four sequencestwo “primary” chains A-x-B-cys-A-x-B where A = arg or lys and B = glu or phosphoser and two “secondary” chains of sequence -gly-x-gly-pro-x-ile-cys-asp-x- forming a symmetrical receptor cup of rectangular form. The present paper extends the model to include the gate over the adjacent ionophore (or “ion conductance modulator”: ICM) and the linking mechanism from receptor to gate. These are postulated to consist of a second Kusnetsov-Ghokov grid generated by a third “primary” chain along the side that covers the orifice to the ion conducting channel. The action of ACh is postulated to be to displace an hydrated Ca++ ion from the receptor cup and to disrupt the AB rungs in the receptor grid. The middle primary chain then slides 14 Å and the AB links reform. This replaces a bulky amino acid pair normally blocking the ion channel by a less bulky amino acid pair and so hydrated ions can be transmitted. It is further postulated that snake neurotoxins (ACh blockers) in a specified conformation bind mainly to the ionophore grid and prevent the sliding filament mechanism from opening; whereas the snake “cardiotoxins” (ACh agonists)—in a specified conformation—bind to the same sliding filament mechanism in its “open” ionophore gate and prevent it being closed: and histrionicotoxin binds to the same open “gate” but blocks it physically. The hypothesis may rigorously be tested by experiment as it makes detailed predictions on the X-ray structure of the snake neurotoxins and cardiotoxins.  相似文献   

9.
The lipid layer membranes were fabricated on the glassy carbon electrode (GC) and demonstrated to be bilayer lipid membranes by impedance spectroscopy. The formation of incorporated poly L-glutamate bilayer lipid membrane was achieved. The ion channel behavior of the incorporated poly L-glutamate membrane was determined. When the stimulus calcium cations were added into the electrolyte, the ion channel was opened immediately and exhibited distinct channel current. Otherwise, the ion channel was closed. The cyclic voltammogram at the GC electrode coated with incorporated poly L-glutamate DMPC film response to calcium ion is very fast compared with that at the GC electrode coated only with DMPC film. Ion channel current is not dependent on the time but on the concentration of calcium. The mechanism of the ion channel formation was investigated.  相似文献   

10.
G Cabrini  P De Togni 《Life sciences》1985,36(16):1561-1567
A disorder of calcium homeostasis has been related to the pathogenesis of Cystic Fibrosis (CF). The Authors have studied the relationship between the cytosolic free calcium concentration ([Ca2+]i), the amount of Ca2+ released from endogenous stores and the secretory response in CF neutrophils. Significantly elevated resting [Ca2+]i and depressed Ca2+ release induced by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) is present in CF neutrophils. In the absence of exogenous Ca2+ the secretory response of CF neutrophils after a weak stimulus such as Cytochalasin B (CB) is greater than in normal neutrophils, while a depressed secretion of azurophilic granules is evident in CF neutrophils stimulated by CB + FMLP. The data confirm the hypothesis of an altered Ca2+ homeostasis in CF cells. Cystic Fibrosis (CF), an autosomal recessive exocrinopathy, is characterized by secretory abnormalities and ion transport dysfunctions (for review see 1,2). Since intracellular Ca2+ seems to play a role in stimulus-secretion coupling and ion movements, several aspects of Ca2+ homeostasis have been investigated in CF. The total Ca2+ content has been reported to be increased in fibroblast cultures and in lymphocytes (3,4,5) and mitochondrial Ca2+ uptake was found elevated in fibroblast cultures (6). An elevated free cytosolic calcium concentration ([Ca2+]i) has been recently reported in buccal epithelial cells (7), while normal concentration has been found in lymphocytes and Epstein Barr virus transformed lymphoblasts (5,8). The present paper shows the results of a study in human neutrophils, a cell whose several functions such as secretion, movement and respiratory burst are in some way regulated by Ca2+. The data report that in neutrophils of CF patients the resting [Ca2+]i is higher and the secretory response is partly modified.  相似文献   

11.
In order to investigate the influence of calcium and strontium ion concentration on human bone marrow stromal cells and their differentiation to osteoblasts, different cell culture media have been used. Even though this study does not contain a bone substitute material, the reason for this study was the decrease of cation concentration by many biomaterials, due to induced apatite precipitation. As a consequence, the reduced calcium ion concentration is known to affect osteoblastic development. Therefore, the main focus was put on the question, whether an increased strontium concentration (in the range of mM) might be suitable to compensate the lack of calcium ions. The effect of solely strontium ions—with only calcium in the media resulting from fetal calf serum—was investigated. Commercially available calcium-free medium (modified α-MEM) was tested in comparison with media with varied calcium ion concentrations (0.9, 1.8, and 3.6 mM), or strontium ion concentration (0.4, 0.9, 1.8, and 3.6 mM). In case of calcium, higher concentrations cause increased proliferation, while differentiation was shifted to earlier points of time. Differentiation was increased by solely strontium ions only at 0.4–0.9 mM, while proliferation was highest for 0.9–1.8 mM. From these results, it can be concluded that strontium is able to compensate a lack of calcium to a certain degree. Thus, in contrast to calcium ion release, a strontium ion release from bone substitute materials might be applicable for stimulation of bone regeneration without influencing the media saturation.  相似文献   

12.
If a black worm-like dummy is moving against a white background, toads fixate and snap at the leading end of the stimulus. This “head preference” phenomenon is — within limits — independent of (i) background structure, and (ii) stripe length. “Head preference” can be disturbed by reducing the amount of the stimulus background contrast as well as by point structures incorporated in the worm-like shape of the stimulus. If the stimulus-background contrast of the worm dummy is reversed, toads exhibit a clear preference in fixating and snapping for the trailing end of the stimulus. This “tail preference” is independent of changes in (i) and (ii). The neural basis of “head preference” or “tail preference” respectively, is discussed.  相似文献   

13.
In adaptive bone remodeling, mechanical signals such as stress/strain caused by loading/deformation are believed to play important roles as regulators of the process in which osteoclastic resorption and osteoblastic formation are coordinated under a local mechanical environment. The mechanism by which cells sense and transduce mechanical signals to the intracellular biochemical signaling cascade is still unclear, however to address this issue, the present study investigated the characteristic response of a single osteoblastic cell, MC3T3-E1, to a well-defined mechanical stimulus and the involvement of the cytoskeletal actin fiber structure in the mechanotransduction pathway. First, by mechanically perturbing to a single cell using a microneedle, a change in the intracellular calcium ion concentration [Ca2+]i was observed as a primal signaling response to a mechanical stimulus, and the threshold value of the perturbation as the mechanical stimulus was evaluated quantitatively. Second, to study directional dependence of the response to the mechanical stimulus, the effect of actin fiber orientation on the threshold value of the calcium response was investigated at various magnitudes and directions of the stimulus. It was found that the osteoblastic response to the perturbation exhibited a directional dependence. That is, the sensitivity of osteoblastic cells to a mechanical stimulus depends on the angle of the applied deformation with respect to the cytoskeletal actin fiber orientation. This finding is phenomenological evidence that cytoskeletal actin fiber structures are involved in the mechanotransduction mechanism, which may be related to cell polarization behaviors such as cellular alignment caused by mechanical stimulation.  相似文献   

14.
The binding of calcium ions by the isolated asialoglycoprotein receptor of hepatocytes and the inter-relationship between the calcium ion concentration and receptor function have been studied. The isolated receptor binds calcium ions only in the presence of asialoglycoprotein. The asialo-glycoprotein receptor complex binds 4 calcium ions; the binding exhibits marked positive cooperativity, and the association constant at half-saturation of the binding sites was of the order of 10*5) M-1 as determined from a Hill plot. The isolated receptor was almost saturated at a calcium ion concentration of 0.1 mM. The binding capacity of isolated hepatocytes for asialo-glycoproteins increased, however, even when the calcium concentration was increased above this level. This may be explained by the exposure of increasing numbers of functional receptors on the surface of the cell with increasing membrane potential, and this explanation is supported by analogous observations in the presence of 5 mM La3+.  相似文献   

15.
Tong  J. X  Vogelbaum  M. A  Drzymala  R. E  Rich  K. M 《Brain Cell Biology》1997,26(11):771-777
Ionizing radiation (IR) results in apoptosis in a number of actively proliferating or immature cell types. The effect of IR on rat dorsal root ganglion (DRG) neurons was examined in dissociated cell cultures. After exposure to IR, embryonic DRG neurons, established in cell culture for six days, underwent cell death in a manner that was dose-dependent, requiring a minimum of 8 to 16 Gy. Twenty-five per cent cell loss occurred in embryonic day 15 (E-15) neurons, grown in cell culture for 6 days (“immature”), and then treated with 24 Gy IR. In contrast, only 2% cell loss occurred in E-15 neurons maintained in culture for 21 days ("mature") and then treated with 24 Gy IR. Staining with a fluorescent DNA-binding dye demonstrated clumping of the nuclear chromatin typical of apoptosis. Initiation of the apoptosis occurred within 24 h after exposure to IR. Apoptosis was prevented by inhibition of protein synthesis with cycloheximide. Apoptosis induced by IR occurred more frequently in immature than in mature neurons. Immature DRG neurons have a lower concentration of intracellular calcium ([Ca2+]i) than mature neurons. Elevation of [Ca2+]i by exposure to a high extracellular potassium ion concentration (35 μM) depolarizes the cell membrane with a resultant influx of calcium ions. The activation of programmed cell death after nerve growth factor (NGF) withdrawal is inversely correlated with [Ca2+]i in immature DRG neurons. When treated with high extracellular potassium, these immature neurons were resistant to IR exposure in a manner similar to that observed in mature neurons. These data suggest that [Ca2+]i modulates the apoptotic response of neurons after exposure to IR in a similar manner to that proposed by the “Ca2+ setpoint hypothesis” for control of NGF withdrawal-induced apoptosis.  相似文献   

16.
Micromolar calcium ion concentrations stimulate exocytosis in a reconstituted system made by recombining in the plasma membrane and cortical secretory granules of the sea urchin egg. The isolated cortical granules are unaffected by calcium concentrations up to 1 mM, nor do granule aggregates undergo any mutual fusion at this concentration. Both isolated plasma membrane and cortical granules can be pretreated with 1 mM Ca before reconstitution without affecting the subsequent exocytosis of the reconstituted system in response to micromolar calcium concentrations. On reconstitution, aggregated cortical granules will fuse with one another in response to micromolar calcium provided that one of their number is in contact with the plasma membrane. If exocytosis involves the generation of lipid fusogens, then these results suggest that the calcium-stimulated production of a fusogen can occur only when contiguity exists between cortical granules and plasma membrane. They also suggest that a substance involved in exocytosis can diffuse and cause piggy-back fusion of secretory granules that are in contact with the plasma membrane. Our results are also consistent with a scheme in which calcium ions cause a reversible, allosteric activation of an exocytotic protein.  相似文献   

17.
1. Stentor coeruleus exhibits negative phototaxis (due to phototactic orientation response) and step-up photophobic response (avoiding reaction) to visible light. 2. The effect of Ja-value ([K+]/[Ca2+]1/2) and calcium ion concentration of the surrounding medium on the photoresponses in Stentor were studied. 3. The both types of photoresponses in Stentor are greatly affected by the Ja-value. A higher Ja-value medium suppressed the step-up photophobic response of Stentor, whereas the organism showed a higher degree of phototactic orientation response in higher Ja-value solutions. 4. The effect of the Ja-value on the step-up photophobic response was opposite to that on the phototactic orientation response. 5. With increasing calcium concentration but at a constant Ja-value, the number of Stentor showing the step-up photophobic response increased, whereas the phototactic orientation response of Stentor was suppressed at higher Ca2+ concentrations. 6. The effect of the calcium concentration on the photophobic response was also opposite to that on the phototactic orientation response, as in the case of Ja-value effect.  相似文献   

18.
Spermatozoids and vegetative cells of the green alga Golenkinia minutissima Iyengar et Balakrishnan have been examined by light and electron microscopy. The biflagellate spermatozoids are of a somewhat specialised type, elongated with the nucleus attached to the flagellar bases, and containing a reduced chloroplast without pyrenoid or eyespot. The flagellar apparatus and root system has been examined in detail and is compared with that found in other green algae. The flagella are of a previously unknown type; they contain only one central microtubule—possibly non-functional—but they move in an apparently normal way. Present knowledge about flagellar roots in green algae has been assembled in a table, showing that the cruciate root has now been found in 10 genera, belonging to almost as many families. Exceptions are Oedogonium, which contains a modification of this type, and the Charales, which are very different. During spermatogenesis in Golenkinia each spermatozoid is surrounded by a wall which disappears at maturity. This fact may prove to be of taxonomic value.

The spines on the vegetative cells are composed of regularly arranged longitudinal fibrils, possibly cellulose, attached to the inner part of the two-layered cell wall. The content of the vegetative cell is typically chlorococcalean.  相似文献   

19.
Three isomeric ceramide tetrasaccharides — P blood-group active globoside, lacto-N-neotetraosyl ceramide as ABH blood-group precursor, both isolated from human erythrocytes and “asiologanglioside” from human brain as reference standard — and two ceramide pentasaccharides — H blood-group active glycosphingolipid, obtained from blood-group B active ceramide hexasaccharide of human B erythrocytes after α-galactosidase treatment and ceramide pentasaccharide from rabbit erythrocytes with B-like blood-group activity — were investigated by mass spectrometry after permethylation. The carbohydrate moiety exhibits differences not only concerning the sugar sequence but also with regard to the position of some glycosidie linkages: Oligosaccharides containing N-acetylhexosamine substituted at position 4 produce spectra that are distinctly different from those containing C-3 substituted N-acetylhexosamines, thus allowing the differentiation between type 1 and type 2 carbohydrate chains. Moreover, oligosaccharide ions with a hexose at the cleavage site exhibit a fragmentation pattern different from those with a N-acetylhexosamine at the “reducing terminal”. The intensity ratio between parent ion and parent ion — 32 mass units is Q ? 3 in the first case, whereas in the latter case Q is <1. The Q-values are given for 14 oligosaccharide ions. Differences in the composition of the ceramide residues can also be deduced from the mass spectra.  相似文献   

20.
The crustacean single nerve fiber gives rise to trains of impulses during a prolonged depolarizing stimulus. It is well known that the alkaloid veratrine itself causes a prolonged depolarization; and consequently it was of interest to investigate the effect of this chemically produced depolarization on repetitive firing in the single axon and compare it with the effect of depolarization by an applied stimulating current or by a potassium-rich solution. It was found that veratrine depolarization, though similar in some respects to a potassium-rich depolarization of depolarizing current effect, was in many respects quite different. (1) At low veratrine concentration, less than 1 Mg%, the negative after potential following a spike action potential was prolonged and augmented. At higher concentrations or after a long period of time, veratrine caused a prolonged steady state depolarization of the membrane, the “veratrine response”. The prolonged plateau depolarization response could be elicited with or without an action potential spike by a short or long duration stimulating pulse, but only if the veratrine depolarization was prevented or offset by an applied conditioning hyperpolarizing inward current. (2) The “veratrine response” resembled the potassium-rich solution response in the plateau-like contour of the depolarization and the very low membrane resistance during this plateau phase. Like the potassium response, it was possible to obtain a typical hyperpolarizing response with an inwardly directed current pulse if applied during the plateau phase. During the negative after potential augmented with veratrine, however, this hyperpolarizing response was not observed. (3) In contrast to the potassium response, however, the “veratrine response” is intimately associated with the sodium concentration in the external medium. The depolarization in millivolts is linearly related to the log of the concentration of external sodium. Moreover, during veratrine action there is a continuous and progressive inactivation of the sodium mechanism which ultimately terminates repetitive firing and abolishes the spike action potential. Then even with conditioning hyperpolarization only the slow response may be elicited in veratrine, occasionally with a spike superimposed if sodium is present, but without repetitive firing. (4) It is concluded that veratrine action is the result of a chemical or metabolic reaction by the alkaloid in the membrane. It is suggested that veratrine may inhibit the sodium extrusion mechanism, or may itself compete for sites in the membrane with calcium and/or sodium. This explains the inhibiting effect of high calcium, the abolition of the “veratrine response” with low temperature and high calcium combined and the progressive inactivation of the sodium system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号