首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We have determined the absolute phosphate content of microtubule-associated proteins (MAPs) and established that phosphorylation inhibits the actin filament cross-linking activity of MAPs and both of the major MAP components, MAP-2 and tau. Similar results were obtained with actin from rabbit muscle, hog brain, and Acanthamoeba castellanii. We used the endogenous phosphatases and kinases in hog brain microtubule protein to modulate MAP phosphate level before isolating heat-stable MAPs. MAPs isolated directly from twice-cycled microtubule protein contain 7.1 +/- 0.1 (S.E.) mol of phosphate/300,000 g protein. After incubating microtubule protein without ATP, MAPs, had 4.9 +/- 0.6 phosphates. After incubating microtubule protein with 1 mM ATP and 5 microM cAMP in 2 mM EGTA, MAPs had 8.6 +/- 0.5 phosphates but there was also exchange of three more [32P]phosphates from gamma-labeled ATP for preexisting MAP phosphate. Incubation of microtubule protein with ATP and cAMP in 5 mM CaCl2 resulted in exchange but no net addition of phosphate to MAPs. We fractionated the MAP preparations by gel filtration and obtained MAP-2 with 4.3 to 7.5 and tau with 1.5 to 2.2 mol of phosphate/mol of protein depending on how we treated the microtubule protein prior to MAP isolation. The actin filament cross-linking activity of whole MAPs, MAP-2, and tau depended on the MAP-phosphate content. In all cases, phosphorylation of MAPs inhibited actin filament cross-linking activity. The concentration of high phosphate MAPs required to form a high viscosity solution with actin filaments was 2 to 4 times more than that of low phosphate. MAPs. During incubation of microtubule protein with [gamma-32P]ATP, only MAP peptides are labeled. Treatment of these MAPs with either acid or alkaline phosphatase removes phosphate mainly from MAP-2, with an increase in actin filament cross-linking activity. Thus, both MAP phosphorylation and the effect of phosphorylation on actin cross-linking activity of MAPs are reversible.  相似文献   

2.
Binding of calmodulin to microtubule-associated proteins (MAPs) was analyzed by the equilibrium gel filtration method. The apparent dissociation constant (Kd) of calmodulin binding was found to be 2 microM for tau, and 5 microM for MAP2. These Kd values were similar to the Kd previously determined for calmodulin binding to tubulin. The inhibitory effect of increasing concentrations of calmodulin on the kinetics of microtubule assembly from tau and tubulin was not mimicked by decreasing the concentration of tau alone or tubulin alone. These results suggest that calmodulin inhibits microtubule assembly by its binding to both MAPs and tubulin.  相似文献   

3.
Microtubules are flexible polymers whose mechanical properties are an important factor in the determination of cell architecture and function. It has been proposed that the two most prominent neuronal microtubule-associated proteins (MAPs), tau and MAP2, whose microtubule binding regions are largely homologous, make an important contribution to the formation and maintenance of neuronal processes, putatively by increasing the rigidity of microtubules. Using optical tweezers to manipulate single microtubules, we have measured their flexural rigidity in the presence of various constructs of tau and MAP2c. The results show a three- or fourfold increase of microtubule rigidity in the presence of wild-type tau or MAP2c, respectively. Unexpectedly, even low concentrations of MAPs promote a substantial increase in microtubule rigidity. Thus at ~20% saturation with full-length tau, a microtubule exhibits >80% of the rigidity observed at near saturating concentrations. Several different constructs of tau or MAP2 were used to determine the relative contribution of certain subdomains in the microtubule-binding region. All constructs tested increase microtubule rigidity, albeit to different extents. Thus, the repeat domains alone increase microtubule rigidity only marginally, whereas the domains flanking the repeats make a significant contribution. Overall, there is an excellent correlation between the strength of binding of a MAP construct to microtubules (as represented by its dissociation constant Kd) and the increase in microtubule rigidity. These findings demonstrate that neuronal MAPs as well as constructs derived from them increase microtubule rigidity, and that the changes in rigidity observed with different constructs correlate well with other biochemical and physiological parameters.  相似文献   

4.
Members of the heat-stable family of microtubule-associated proteins (MAPs), MAP 2, tau, and MAP 4, contain three or four tandem imperfect repeated sequences close to their carboxyl termini. These sequences lie within the microtubule-binding domains of the MAPs; they have been proposed to be responsible for microtubule binding and the ability of these MAPs to lower the critical concentration for microtubule assembly. Their spacing may reflect that of the regularly arrayed tubulin subunits on the microtubule surface. We here characterize the 32- and 34-kDa chymotryptic microtubule-binding fragments of MAP 2 identified in earlier work. We identify the primary chymotryptic cleavage site in high molecular weight MAP 2 as between Phe1525 and Lys1526, within 13 amino acids of the known MAP 2 splice junction. We have raised a monoclonal antibody to the 32- and 34-kDa fragments and find that it reacts with all members of the heat-stable MAPs class. To determine where it reacts, we sequenced immunoreactive subfragments of the 32- and 34-kDa fragments, selected several cDNA clones with the antibody, and tested for antibody reactivity against a series of synthetic MAP 2 and tau peptides. We identify the epitope sequence as HHVPGGG (His-His-Val-Pro-Gly-Gly-Gly). The antibody also recognized several other MAP 2 and tau repeats. Despite reacting with this highly conserved element, we find that the antibody does not block microtubule binding, but binds to the MAPs and co-sediments with microtubules. These results suggest that there are other regions besides the repeated elements which are essential for microtubule binding.  相似文献   

5.
BACKGROUND: MAP2 and tau are abundant microtubule-associated proteins (MAPs) in neurons. The development of neuronal dendrites and axons requires a dynamic interaction between microtubules and actin filaments. MAPs represent good candidates to mediate such interactions. Although MAP2c and tau have similar, well-characterized microtubule binding activities, their actin interaction is poorly understood. RESULTS: Here, we show by using a cosedimentation assay that MAP2c binds F-actin. Upon actin binding, MAP2c organizes F-actin into closely packed actin bundles. Moreover, we show by using a deletion approach that MAP2c's microtubule binding domain (MTBD) is both necessary and sufficient for both F-actin binding and bundling activities. Surprisingly, even though the MAP2 and tau MTBDs share high sequence homology and possess similar microtubule binding activities, tau is unable to bind or bundle F-actin. Furthermore, experiments with chimeric proteins demonstrate that the actin binding activity fully correlates with the ability to promote neurite initiation in neuroblastoma cells. CONCLUSIONS: These results provide the first demonstration that the MAP2c and tau MTBD domains exhibit distinct properties, diverging in actin binding and neurite initiation activities. These results implicate a novel actin function for MAP2c in neuronal morphogenesis and furthermore suggest that actin interactions could contribute to functional differences between MAP2 and tau in neurons.  相似文献   

6.
7.
《The Journal of cell biology》1994,126(4):1017-1029
To study the effects of microtubule-associated proteins (MAPs) on in vivo microtubule assembly, cDNAs containing the complete coding sequences of a Drosophila 205-kD heat stable MAP, human MAP 4, and human tau were stably transfected into CHO cells. Constitutive expression of the transfected genes was low in most cases and had no obvious effects on the viability of the transfected cell lines. High levels of expression, as judged by Western blots, immunofluorescence, and Northern blots, could be induced by treating cells with sodium butyrate. High levels of MAPs were maintained for at least 24-48 h after removal of the sodium butyrate. Immunofluorescence analysis indicated that all three MAPs bound to cellular microtubules, but only the transfected tau caused a rearrangement of microtubules into bundles. Despite high levels of expression of these exogenous MAPs and the bundling of microtubules in cells expressing tau, transfected cells had normal levels of assembled and unassembled tubulin. With the exception of the tau-induced bundles, microtubules in transfected cells showed the same sensitivity as control cells to microtubule depolymerization by Colcemid. Further, all three MAPs were ineffective in reversing the taxol-dependent phenotype of a CHO mutant cell line. The absence of a quantitative effect of any of these heterologous proteins on the assembly of tubulin suggests that these MAPs may have different roles in vivo from those inferred previously from in vitro experiments.  相似文献   

8.
A comparison was made of cytosynalin- and MAPs-induced microtubule formation. Cytosynalin (a 35 kDa cytoskeleton-interacting and calmodulin-binding protein) facilitated more rapid and extensive microtubule formation than MAPs. Electron microscopic examination revealed that the cytosynalin-induced microtubules were 24 nm tubules surrounded by a periodic nap structure along their length. Consequently, the apparent diameter of microtubules was seen as 34 nm. Cytosynalin maximally bound to tubulin dimer at a molar ratio of 1:1. The effect of cytosynalin on the microtubule formation was found to be more potent than that of MAP2 or tau factor as determined by electron microscopy and cosedimentation assay.  相似文献   

9.
The MAPs (microtubule-associated proteins) MAP1B and tau are well known for binding to microtubules and stabilizing these structures. An additional role for MAPs has emerged recently where they appear to participate in the regulation of transport of cargos on the microtubules found in axons. In this role, tau has been associated with the regulation of anterograde axonal transport. We now report that MAP1B is associated with the regulation of retrograde axonal transport of mitochondria. This finding potentially provides precise control of axonal transport by MAPs at several levels: controlling the anterograde or retrograde direction of transport depending on the type of MAP involved, controlling the speed of transport and controlling the stability of the microtubule tracks upon which transport occurs.  相似文献   

10.
《The Journal of cell biology》1985,101(5):1680-1689
We have developed a method to distinguish microtubule associated protein (MAP)-containing regions from MAP-free regions within a microtubule, or within microtubule sub-populations. In this method, we measure the MAP-dependent stabilization of microtubule regions to dilution-induced disassembly of the polymer. The appropriate microtubule regions are identified by assembly in the presence of [3H]GTP, and assayed by filter trapping and quantitation of microtubule regions that contain label. We find that MAPs bind very rapidly to polymer binding sites and that they do not exchange from these sites measurably once bound. Also, very low concentrations of MAPs yield measurable stabilization of local microtubule regions. Unlike the stable tubule only polypeptide (STOP) proteins, MAPs do not exhibit any sliding behavior under our assay conditions. These results predict the presence of different stability subclasses of microtubules when MAPs are present in less than saturating amounts. The data can readily account for the observed "dynamic instability" of microtubules through unequal MAP distributions. Further, we report that MAP dependent stabilization is quantitatively reversed by MAP phosphorylation, but that calmodulin, in large excess, has no specific influence on MAP protein activity when MAPs are on microtubules.  相似文献   

11.
Microtubule-associated proteins (MAPs) can promote microtubule assemblyin vitro. One of these MAPs (MAP2) consists of a short promoter domain which binds to the microtubule and promotes assembly and a long projection domain which projects out from the microtubule and may interact wth other cytoskeletal elements. We have previously shown that MAP2 and another MAP, tau, differ in their interactions with tubulin in that tau, but not MAP2, promotes extensive aggregation of tubulin into spiral clusters in the presence of vinblastine and that microtubules formed with MAP2 are more resistant than those formed with tau to the antimitotic drug maytansine [Luduena, R. F.,et al. (1984),J. Biol. Chem. 259, 12890–12898; Fellous, A.,et al. (1985),Cancer Res. 45, 5004–5010]. Here we have used chymotryptic digestion to remove the projection domain of MAP2 and examined the interaction of the digested MAP2 (ctMAP2) with tubulin in the presence of vinblastine and maytansine. We have found that ctMAP2 behaves very much like tau, but not like undigested MAP2, in the presence of vinblastine, in that ctMAP2 causes tubulin to polymerize into large clusters of spirals. In contrast, microtubule assembly in the presence of ctMAP2 is much more resistant to maytansine inhibition than is assembly in the presence of tau or undigested MAP2. Our results suggest that the projection domain of MAP2 may play a role in the interaction of tubulin with MAP2 during microtubule assembly.Abbreviations MAPs microtubule-associated proteins - ctMAP2 MAP2 digested with-chymotrypsin - nMAP2 untreated MAP2 - PMSF phenylmethylsulfonyl fluoride - GMPCPP guanosine-5-(,-methylene)triphosphate  相似文献   

12.
Microtubule-associated proteins (MAPs) were phosphorylated by a Ca2+- and calmodulin-dependent protein kinase from rat brain cytosol. The maximal amount of phosphate incorporated into MAPs was 25 nmol of phosphate/mg protein. A Ka value of the enzyme for calmodulin was 57.0 nM, with MAPs as substrates. Among MAPs, MAP2 and tau factor were phosphorylated in a Ca2+- and calmodulin-dependent manner. The phosphorylation of MAPs led to an inhibition of microtubule assembly in accordance with its degree. This reaction was dependent on addition of the enzyme, Ca2+, and calmodulin, and had a greater effect on the initial rate of microtubule assembly rather than on the final extent. The critical tubulin concentration for microtubule assembly was unchanged by the MAPs phosphorylation. Therefore assembly and disassembly of brain microtubule are regulated by the Ca2+- and calmodulin-dependent protein kinase that requires only a nanomolar concentration of calmodulin for activation.  相似文献   

13.
Although microtubules are known to play an important role in many cellular processes, they have been virtually neglected in fish. In this report, microtubule-associated proteins (MAPs) in fish (teleost) were characterized using antibodies (Abs) directed against the mammalian MAPs tau, MAP1A and B, and MAP 2. Two different populations of tau-like proteins (TLPs) were found in fish brain using the anti-tau Abs Tau-1, Tau-2, tau5', and tau3'. The TLPs that were recognized by Tau-1, Tau-2, and tau5' were (1) heat-stable; (2) the same molecular weight as mammalian TLPs: 59-62 kDa; (3) not enriched in microtubules prepared from catfish brain; and (4) localized to the cell body of neurons in fish brains. While the TLPs recognized by tau3' Abs were (1) heat-stable; (2) lower molecular weight than mammalian TLPs: 32-55 vs. 50-65 kDa; (3) enriched in microtubule fractions prepared from catfish brain, and (4) localized to the axons of neurons. These results are consistent with two different populations of TLPs being present in fish brains. While MAP2 was found to be approximately the same molecular weight, 250 kDa, in zebrafish and goldfish as in mammals and to be distributed to dendrites in the fish brain, both MAP1A and MAP1B were found to be about 25% the mass of their mammalian homologs. These results suggest that MAPS in fish have some characteristics similar to their mammalian counterparts, but also possess some unique properties that require further study to elucidate their function.  相似文献   

14.
Alterations of the axonal transport and microtubule network are potential causes of motor neurodegeneration in mice expressing a mutant form of the superoxide dismutase 1 (SOD1G37R) linked to amyotrophic lateral sclerosis (ALS). In the present study, we investigated the biology of microtubule-associated proteins (MAPs), responsible for the formation and stabilization of microtubules, in SOD1G37R mice. Our results show that the protein levels of MAP2, MAP1A, tau 100 kDa and tau 68 kDa species decrease significantly as early as 5 months before onset of symptoms in the spinal cord of SOD1G37R mice, whereas decrease in levels of tau 52-55 kDa species is most often noted with the manifestation of the clinical symptoms. Interestingly, there was no change in the protein levels of MAPs in the brain of SOD1G37R mice, a CNS organ spared by the mutant SOD1 toxicity. Remarkably, as early as 5 months before disease onset, the binding affinities of MAP1A, MAP2 and tau isoforms to the cytoskeleton decreased in spinal cord of SOD1G37R mice. This change correlated with a hyperphosphorylation of the soluble tau 52-55 kDa species at epitopes recognized by the antibodies AT8 and PHF-1. Finally, a shift in the distribution of MAP2 from the cytosol to the membrane is detected in SOD1G37R mice at the same stage. Thus, alterations in the integrity of microtubules are early events of the neurodegenerative processes in SOD1G37R mice.  相似文献   

15.
Microtubules are intrinsically dynamic polymers. Two kinds of dynamic behaviors, dynamic instability and treadmilling, are important for microtubule function in cells. Both dynamic behaviors appear to be tightly regulated, but the cellular molecules and the mechanisms responsible for the regulation remain largely unexplored. While microtubule dynamics can be modulated transiently by the interaction of regulatory molecules with soluble tubulin, the microtubule itself is likely to be the primary target of cellular molecules that regulate microtubule dynamics. The antimitotic drugs that modulate microtubule dynamics serve as excellent models for such cellular molecules. Our laboratory has been investigating the interactions of small drug molecules and stabilizing microtubule-associated proteins (MAPs) with microtubule surfaces and ends. We find that drugs such as colchicine, vinblastine, and taxol, and stabilizing MAPs such as tau, strongly modulate microtubule dynamics at extremely low concentrations under conditions in which the microtubule polymer mass is minimally affected. The powerful modulation of the dynamics is brought about by the binding of only a few drug or MAP molecules to distinct binding sites at the microtubule surface or end. Based upon our understanding of the well-studied drugs and stabilizing MAPs, it is clear that molecules that regulate dynamics such as Kin 1 and stathmin could bind to a large number of distinct tubulin sites on microtubules and employ an array of mechanisms to selectively and powerfully regulate microtubule dynamics and dynamics-dependent cellular functions.  相似文献   

16.
The effect of the antimitotic drug taxol on the association of MAPs (microtubule-associated proteins) with microtubules was investigated. Extensive microtubule assembly occurred in the presence of Taxol at 37 degrees C. at 0 degrees C, and at 37 degrees C in the presence of 0.35 M NaCl, overcoming the inhibition of assembly normally observed under the latter two conditions. At 37 degrees C and at 0 degrees C, complete assembly of both tubulin and the MAPs was observed in the presence of Taxol. However, at elevated ionic strength, only tubulin assembled, forming microtubules devoid of MAPs. The MAPs could also be released from the surface of preformed microtubules by exposure to elevated ionic strength. These properties provided the basis for a rapid new procedure for isolating microtubules and MAPs of high purity from small amounts of biological material. The MAPs could be recovered by exposure of the microtubules to elevated ionic strength and subjected to further analysis. Microtubules and MAPs were prepared from bovine cerebral cortex (gray matter) and from HeLa cells. MAP 1, MAP2, and the tau MAPs, as well as species of Mr = 28,000 and 30,000 (LMW, or low molecular weight, MAPs) and a species of Mr = 70,000 were isolated from gray matter. Species identified as the 210,000 and 125,000 mol wt HeLa MAPs were isolated from HeLa cells. Microtubules were also prepared for the first time from white matter. All of the MAPs identified in gray matter preparations were identified in white matter, but the amounts of individual MAP species differed. The most striking difference in the two preparations was a fivefold lower level of MAP 2 relative to tubulin in white matter than in gray. The high molecular weigh MAP, MAP1, was present in equal ratio to tubulin in white and gray matter. These results indicate that MAP 1 and MAP2, as well as other MAP species, may have a different cellular or subcellular distribution.  相似文献   

17.
Motor proteins and microtubule-associated proteins (MAPs) play important roles in cellular transport, regulation of shape and polarity of cells. While motor proteins generate motility, MAPs are thought to stabilize the microtubule tracks. However, the proteins also interfere with each other, such that MAPs are able to inhibit transport of vesicles and organelles in cells. In order to investigate the mechanism of MAP-motor interference in molecular detail, we have studied single kinesin molecules by total internal reflection fluorescence microscopy in the presence of different neuronal MAPs (tau, MAP2c). The parameters observed included run-length (a measure of processivity), velocity and frequency of attachment. The main effect of MAPs was to reduce the attachment frequency of motors. This effect was dependent on the concentration, the affinity to microtubules and the domain composition of MAPs. In contrast, once attached, the motors did not show a change in speed, nor in their run-length. The results suggest that MAPs can regulate motor activity on the level of initial attachment, but not during motion.  相似文献   

18.
E Hamel  C M Lin 《Biochemistry》1984,23(18):4173-4184
A new method for separating microtubule-associated proteins (MAPs) and tubulin, appropriate for relatively large-scale preparations, was developed. Most of the active tubulin was separated from the MAPs by centrifugation after selective polymerization of the tubulin was induced with 1.6 M 2-(N-morpholino)ethanesulfonate (Mes) and GTP. The MAPs-enriched supernatant was concentrated and subsequently clarified by prolonged centrifugation. The supernatant (total soluble MAPs) contained almost no tubulin, most of the nucleosidediphosphate kinase activity of the microtubule protein, good activity in promoting microtubule assembly in 0.1 M Mes, and proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The pellet, inactive in supporting microtubule assembly, contained denatured tubulin, most of the ATPase activity of the microtubule protein, and significant amounts of protein with the electrophoretic mobility of MAP-2. Insoluble material at this and all previous stages, including the preparation of the microtubule protein, could be heat extracted to yield soluble protein active in promoting microtubule assembly and containing MAP-2 as a major constituent. The total soluble MAPs were further purified by DEAE-cellulose chromatography into bound and unbound components, both of which induced microtubule assembly. The bound component (DEAE-MAPs) contained proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The polymerization reaction induced by the unbound component (flow-through MAPs) produced very high turbidity readings. This was caused by the formation of bundles of microtubules. Although the flow-through MAPs contained significantly more ATPase, tubulin-independent GTPase, and, especially, nucleosidediphosphate kinase activity than the DEAE-MAPs, preparation of a MAPs fraction without these enzymes required heat treatment.  相似文献   

19.
We have used the nerve growth factor (NGF)-responsive line of PC12 pheochromocytoma cells as a model system to study microtubule specializations associated with neurite outgrowth. PC12 cells treated with NGF cease proliferating and extend neurites. Long-term NGF treatment results in a two- to threefold increase in the proportion of total cellular tubulin that is polymerized in PC12 cells. The increase in this parameter first becomes apparent at 2-4 d with NGF and increases steadily thereafter. Several changes in microtubule-associated proteins (MAPs) of PC12 cells also occur after exposure to NGF. In immunoprecipitation assays, we observed the levels of MAP-2 to increase by at least several-fold after treatment with NGF. We also found that the compositions of three MAP classes with apparent Mr of 64K, 67K, and 80K are altered by NGF treatment. These MAPs, recently designated "chartins," are biochemically and immunologically distinct from the similarly-sized tau MAPs (Peng et al., 1985 Brain Res. 361: 200; Magendantz and Solomon, 1985 Proc. Natl. Acad. Sci. 82: 6581). In two-dimensional isoelectric focusing x SDS polyacrylamide gels, each chartin MAP class resolves into a set of proteins of similar apparent Mr but distinct pI. Peptide mapping analyses confirm that the isoelectric variants comprising each chartin MAP class are closely related in primary structure. Several striking differences in the composition of the chartin MAPs of PC12 cells grown with or without NGF were consistently observed. In particular, following longterm NGF treatment, the abundances of the more acidic variants of each chartin MAP class were markedly enhanced relative to the more basic members. This occurs without substantial changes in the abundance of each MAP class as a whole relative to total cell protein. The combined results of in vivo phosphorylation and peptide mapping experiments indicate that the NGF-inducible chartin MAP species are not primary translation products, but are generated posttranslationally, apparently by differential phosphorylation of other chartin MAPs. These observations suggest that NGF treatment of PC12 cells leads to changes in the posttranslational processing of the chartin MAPs. The time course of these changes closely resembles that for the increase in the proportion of cellular tubulin that is polymerized and for neurite outgrowth. One of the important events in the growth and stabilization of neurites appears to be the formation of microtubule bundles that extend from the cell body to the tips of the neurites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
MAP2 (microtubule-associated protein 2) and tau factor are calmodulin-binding and actin filament-interacting proteins, respectively. We have examined the effect of Ca2+ and calmodulin on MAP-induced actin gelation by the low-shear falling-ball method, the high-speed centrifugation method, and electron microscopy using negative staining. Each MAP crosslinks actin filaments to increase the apparent viscosities and finally to form gels. Calmodulin inhibited MAP2- and tau factor-induced actin gelation (MAP2- and tau factor-actin interaction) only in the presence of Ca2+, but not in its absence. There were no differences in actin filament crosslinking activity of respective MAPs with or without Ca2+. MAP2 was not coprecipitated with F-actin only in the presence of Ca2+ and calmodulin determined by the high-speed centrifugation method. But MAP2 was found to bind to F-actin under any other conditions examined. In contrast, the tau factor-actin filament interaction could only be detected by the low-shear viscosity, but not by the high-speed centrifugation method. MAP2 and tau factor aggregated to form actin bundles as shown by electron microscopy. MAP2- or tau factor-induced bundle formation of actin filaments was inhibited only in the presence of Ca2+ and calmodulin, but not in the presence or absence of Ca2+. In conclusion, the interaction of MAP2- and tau factor-actin filaments is regulated by Ca2+ and calmodulin in a flip-flop switch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号