首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Seasonal variations of dissolved inorganic nitrogen (DIN) (NO3–N and NH4–N) and dissolved organic nitrogen (DON) were determined in Fuirosos, an intermittent stream draining an unpolluted Mediterranean forested catchment (10.5 km2) in Catalonia (Spain). The influence of flow on streamwater concentrations and seasonal differences in quality and origin of dissolved organic matter, inferred from dissolved organic carbon to nitrogen ratios (DOC:DON ratios), were examined. During baseflow conditions, nitrate and ammonium had opposite behaviour, probably controlled by biological processes such as vegetation uptake and mineralization activity. DON concentrations did not have a seasonal trend. During storms, nitrate and DON increased by several times but discharge was not a good predictor of nutrient concentrations. DOC:DON ratios in streamwater were around 26, except during the months following drought when DOC:DON ratios ranged between 42 and 20 during baseflow and stormflow conditions, respectively. Annual N export during 2000–2001 was 70 kg km−1 year−1, of which 75% was delivered during stormflow. The relative contribution of nitrogen forms to the total annual export was 57, 35 and 8% as NO3–N, DON and NH4–N, respectively.  相似文献   

2.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

3.
The Ferrous Wheel Hypothesis (Davidson et al. 2003) postulates the abiotic formation of dissolved organic N (DON) in forest floors, by the fast reaction of NO2 with dissolved organic C (DOC). We investigated the abiotic reaction of NO2 with dissolved organic matter extracted from six different forest floors under oxic conditions. Solutions differed in DOC concentrations (15–60 mg L−1), NO2 concentrations (0, 2, 20 mg NO2 -N L−1) and DOC/DON ratio (13.4–25.4). Concentrations of added NO2 never decreased within 60 min, therefore, no DON formation from added NO2 took place in any of the samples. Our results suggest that the reaction of NO2 with natural DOC in forest floors is rather unlikely.  相似文献   

4.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

5.
Porewater equilibration samplers were used to obtain porewater inventories of inorganic nutrients (NH4+, NOx, PO43−), dissolved organic carbon (DOC) and nitrogen (DON), sulfate (SO42−), dissolved inorganic carbon (DIC), hydrogen sulfide (H2S), chloride (Cl), methane (CH4) and reduced iron (Fe2+) in intertidal creek-bank sediments at eight sites in three estuarine systems over a range of salinities and seasons. Sulfate reduction (SR) rates and sediment particulate organic carbon (POC) and nitrogen (PON) were also determined at several of the sites. Four sites in the Okatee River estuary in South Carolina, two sites on Sapelo Island, Georgia and one site in White Oak Creek, Georgia appeared to be relatively pristine. The eighth site in Umbrella Creek, Georgia was directly adjacent to a small residential development employing septic systems to handle household waste. The large data set (>700 porewater profiles) offers an opportunity to assess system-scale patterns of porewater biogeochemical dynamics with an emphasis on DOC and DON distributions. SO42− depletion (SO42−)Dep was used as a proxy for SR, and (SO42−)Dep patterns agreed with measured (35S) patterns of SR. There were significant system-scale correlations between the inorganic products of terminal metabolism (DIC, NH4+ and PO43−) and (SO42−)Dep, and SR appeared to be the dominant terminal carbon oxidation pathway in these sediments. Porewater inventories of DIC and (SO42−)Dep indicate a 2:1 stoichiometry across sites, and the C:N ratio of the organic matter undergoing mineralization was between 7.5 and 10. The data suggest that septic-derived dissolved organic matter with a C:N ratio below 6 fueled microbial metabolism and SR at a site with development in the upland. Seasonality was observed in the porewater inventories, but temperature alone did not adequately describe the patterns of (SO42−)Dep, terminal metabolic products (DIC, NH4+, PO43−), DOC and DON, and SR observed in this study. It appears that production and consumption of labile DOC are tightly coupled in these sediments, and that bulk DOC is likely a recalcitrant pool. Preferential hydrolysis of PON relative to POC when overall organic matter mineralization rates were high appears to drive the observed patterns in POC:PON, DOC:DON and DIC:DIN ratios. These data, along with the weak seasonal patterns of SR and organic and inorganic porewater inventories, suggest that the rate of hydrolysis limits organic matter mineralization in these intertidal creek-bank sediments.  相似文献   

6.
Abstract Most experimental additions of nitrogen to forest ecosystems apply the N to the forest floor, bypassing important processes taking place in the canopy, including canopy retention of N and/or conversion of N from one form to another. To quantify these processes, we carried out a large-scale experiment and determined the fate of nitrogen applied directly to a mature coniferous forest canopy in central Maine (18–20 kg N ha−1 y−1 as NH4NO3 applied as a mist using a helicopter). In 2003 and 2004 we measured NO3 , NH4 +, and total dissolved N (TDN) in canopy throughfall (TF) and stemflow (SF) events after each of two growing season applications. Dissolved organic N (DON) was greater than 80% of the TDN under ambient inputs; however NO3 accounted for more than 50% of TF N in the treated plots, followed by NH4 + (35%) and DON (15%). Although NO3 was slightly more efficiently retained by the canopy under ambient inputs, canopy retention of NH4 +as a percent of inputs increased markedly under fertilization. Recovery of less than 30% of the fertilizer N in TF suggested that the forest canopy retained more than 70% of the applied N (>80% when corrected for N which bypassed tree surfaces at the time of fertilizer addition). Results from plots receiving 15N enriched NO3 and NH4 + confirmed bulk N estimations that more NO3 than NH4 + was washed from the canopy by wet deposition. The isotope data did not show evidence of canopy nitrification, as has been reported in other spruce forests receiving much higher N inputs. Conversions of fertilizer-N to DON were observed in TF for both 15NH4 + and 15NO3 additions, and occurred within days of the application. Subsequent rain events were not significantly enriched in 15N, suggesting that canopy DON formation was a rapid process related to recent N inputs to the canopy. We speculate that DON may arise from lichen and/or microbial N cycling rather than assimilation and re-release by tree tissues in this forest. Canopy retention of experimentally added N may meet and exceed calculated annual forest tree demand, although we do not know what fraction of retained N was actually physiologically assimilated by the plants. The observed retention and transformation of DIN within the canopy demonstrate that the fate and ecosystem consequences of N inputs from atmospheric deposition are likely influenced by forest canopy processes, which should be considered in N addition studies. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Dissolved organic nitrogen (DON) has recently been recognized as an important component of terrestrial N cycling, especially under N-limited conditions; however, the effect of increased atmospheric N deposition on DON production and loss from forest soils remains controversial. Here we report DON and dissolved organic carbon (DOC) losses from forest soils receiving very high long-term ambient atmospheric N deposition with or without additional experimental N inputs, to investigate DON biogeochemistry under N-saturated conditions. We studied an old-growth forest, a young pine forest, and a young mixed pine/broadleaf forest in subtropical southern China. All three forests have previously been shown to have high nitrate (NO3) leaching losses, with the highest loss found in the old-growth forest. We hypothesized that DON leaching loss would be forest specific and that the strongest response to experimental N input would be in the N-saturated old-growth forest. Our results showed that under ambient deposition (35–50 kg N ha−1 y−1 as throughfall input), DON leaching below the major rooting zone in all three forests was high (6.5–16.9 kg N ha−1 y−1). DON leaching increased 35–162% following 2.5 years of experimental input of 50–150 kg N ha−1 y−1. The fertilizer-driven increase of DON leaching comprised 4–17% of the added N. A concurrent increase in DOC loss was observed only in the pine forest, even though DOC:DON ratios declined in all three forests. Our data showed that DON accounted for 23–38% of total dissolved N in leaching, highlighting that DON could be a significant pathway of N loss from forests moving toward N saturation. The most pronounced N treatment effect on DON fluxes was not found in the old-growth forest that had the highest DON loss under ambient conditions. DON leaching was highly correlated with NO3 leaching in all three forests. We hypothesize that abiotic incorporation of excess NO3 (through chemically reactive NO2) into soil organic matter and the consequent production of N-enriched dissolved organic matter is a major mechanism for the consistent and large DON loss in the N-saturated subtropical forests of southern China. Dr. YT Fang performed research, analyzed data, and wrote the paper; Prof. WX Zhu participated in the initial experimental design, analyzed data, and took part in writing the paper; Prof. P Gundersen conceived the study and took part in writing; Prof. JM Mo and Prof. GY Zhou conceived study; Prof. M Yoh analyzed part of the data and contributed to the development of DON model.  相似文献   

8.
Here we report measurements of organic and inorganic nitrogen (N) fluxes from the high-elevation Green Lakes Valley catchment in the Colorado Front Range for two snowmelt seasons (1998 and 1999). Surface water and soil samples were collected along an elevational gradient extending from the lightly vegetated alpine to the forested subalpine to assess how changes in land cover and basin area affect yields and concentrations of ammonium-N (NH4-N), nitrate-N (NO3-N), dissolved organic N (DON), and particulate organic N (PON). Streamwater yields of NO3-N decreased downstream from 4.3 kg ha−1 in the alpine to 0.75 kg ha−1 at treeline, while yields of DON were much less variable (0.40–0.34 kg ha−1). Yields of NH4-N and PON were low and showed little variation with basin area. NO3-N accounted for 40%–90% of total N along the sample transect and was the dominant form of N at all but the lowest elevation site. Concentrations of DON ranged from approximately 10% of total N in the alpine to 45% in the subalpine. For all sites, volume-weighted mean concentrations of total dissolved nitrogen (TDN) were significantly related to the DIN:DON ratio (R 2 = 0.81, P < 0.001) Concentrations of NO3-N were significantly higher at forested sites that received streamflow from the lightly vegetated alpine reaches of the catchment than in a control catchment that was entirely subalpine forest, suggesting that the alpine may subsidize downstream forested systems with inorganic N. KCl-extractable inorganic N and microbial biomass N showed no relationship to changes in soil properties and vegetative cover moving downstream in catchment. In contrast, soil carbon–nitrogen (C:N) ratios increased with increasing vegetative cover in catchment and were significantly higher in the subalpine compared to the alpine (P < 0.0001) Soil C:N ratios along the sample transect explained 78% of the variation in dissolved organic carbon (DOC) concentrations and 70% of the variation in DON concentrations. These findings suggest that DON is an important vector for N loss in high-elevation ecosystems and that streamwater losses of DON are at least partially dependent on catchment soil organic matter stoichiometry. Received 26 July 2001; accepted 6 May 2002.  相似文献   

9.
Since 1987 we have studied weekly change in winter (December–April) precipitation, snowpack, snowmelt, soil water, and stream water solute flux in a small (176-ha) Northern Michigan watershed vegetated by 65–85 year-old northern hardwoods. Our primary study objective was to quantify the effect of change in winter temperature and precipitation on watershed hydrology and solute flux. During the study winter runoff was correlated with precipitation, and forest soils beneath the snowpack remained unfrozen. Winter air temperature and soil temperature beneath the snowpack increased while precipitation and snowmelt declined. Atmospheric inputs declined for H+, NO3, NH4+, dissolved inorganic nitrogen (DIN), and SO42−. Replicated plot-level results, which could not be directly extrapolated to the watershed scale, showed 90% of atmospheric DIN input was retained in surface shallow (<15 cm deep) soils while SO42− flux increased 70% and dissolved organic carbon (DOC) 30-fold. Most stream water base cation (CB), HCO3, and Cl concentrations declined with increased stream water discharge, K+, NO3, and SO42− remained unchanged, and DOC and dissolved organic nitrogen (DON) increased. Winter stream water solute outputs declined or were unchanged with time except for NO3 and DOC which increased. DOC and DIN outputs were correlated with the percentage of winter runoff and stream discharge that occurred when subsurface flow at the plot-level was shallow (<25 cm beneath Oi). Study results suggest that the percentage of annual runoff occurring as shallow lateral subsurface flow may be a major factor regulating solute outputs and concentrations in snowmelt-dominated ecosystems.  相似文献   

10.
The current expansion of Phragmites australis into the high marsh shortgrass (Spartina patens, Distichlis spicata) communities of eastern U.S. salt marshes provided an opportunity to identify the influence of vegetation types on pools and fluxes of dissolved inorganic nitrogen (DIN). Two brackish tidal marshes of the National Estuarine Research Reserve system were examined, Piermont Marsh of the Hudson River NERR in New York and Hog Island in the Jacques Coustaeu NERR of New Jersey. Pools of DIN in porewater and rates of DIN surface flux were compared in replicated pairs of recently-expanded P. australis and neighboring S. patens-dominated patches on the high marsh surface. Both marshes generally imported nitrate (NO3) and exported ammonium (NH4+), such that overall DIN was exported. No differences in surface exchange of NO3 or NH4+ were observed between vegetation types. Depth-averaged porewater NH4+ concentrations over the entire growing season were 56% lower under P. australis than under S. patens (average 1.4 vs. 3.2 mg NH4+ L−1) with the most profound differences in November. Porewater profiles showed an accumulation of NH4+ at depth in S. patens and constant low concentrations in P. australis from the soil surface to 50 cm depth, with no significant differences in porewater salinity. Despite these profound differences in porewater, NH4+ diffusion from soils of P. australis and S. patens were not measurably different, were similar to other published rates, and were well below estimated rates based on passive diffusion alone. Rapid adsorption and uptake by litter and microbes in surface soils of both communities may buffer NH4+ loss to flooding tides in both communities, thereby reducing the impact of P. australis invasion on NH4+ flux to flooding waters.  相似文献   

11.
Ice cores were collected between 10.03.93 and 15.03.93 along a 200 m profile on a large ice floe in Fram Strait. The ice was typical of Arctic multi-year ice, having a mean thickness along the profile of 2.56 ±0.53 m. It consisted mostly of columnar ice (83%) grown through congelation of seawater at the ice bottom, and the salinity profiles were characterized by a linear increase from 0 psu at the top to values ranging between 3 and 5 psu at depth. Distributions of dissolved organic carbon (DOC) and nitrogen (DON) and major nutrients were compared with ice texture, salinity and chlorophyll a. DOC, DON, dissolved inorganic nitrogen (DIN), NH4 + and NO2 were present in concentrations in excess of that predicted by dilution curves derived from Arctic surface water values. Only NO3 was depleted, although not exhausted. High DOC and DON values in conjunction with high NH4 + levels indicated that a significant proportion of the dissolved organic matter (DOM) was a result of decomposition/grazing of ice algae and/or detritus. The combination of high NH4 + and NO2 points to regeneration of nitrogen compounds. There was no significant correlation between DOC and Chl a in contrast to DON, which had a positively significant correlation with both salinity and Chl a, and the distribution of DOM in the cores might best be described as a combination of both physical and biological processes. There was no correlation between DOC and DON suggesting an uncoupling of DOC and DON dynamics in multi year ice.  相似文献   

12.
Relatively high deposition ofnitrogen (N) in the northeastern United States hascaused concern because sites could become N saturated.In the past, mass-balance studies have been used tomonitor the N status of sites and to investigate theimpact of increased N deposition. Typically, theseefforts have focused on dissolved inorganic forms ofN (DIN = NH4-N + NO3-N) and have largelyignored dissolved organic nitrogen (DON) due todifficulties in its analysis. Recent advances in themeasurement of total dissolved nitrogen (TDN) havefacilitated measurement of DON as the residual of TDN– DIN. We calculated DON and DIN budgets using data onprecipitation and streamwater chemistry collected from9 forested watersheds at 4 sites in New England. TDNin precipitation was composed primarily of DIN. Netretention of TDN ranged from 62 to 89% (4.7 to 10 kghaminus 1 yrminus 1) of annual inputs. DON made up themajority of TDN in stream exports, suggesting thatinclusion of DON is critical to assessing N dynamicseven in areas with large anthropogenic inputs of DIN.Despite the dominance of DON in streamwater,precipitation inputs of DON were approximately equalto outputs. DON concentrations in streamwater did notappear significantly influenced by seasonal biologicalcontrols, but did increase with discharge on somewatersheds. Streamwater NO3-N was the onlyfraction of N that exhibited a seasonal pattern, withconcentrations increasing during the winter months andpeaking during snowmelt runoff. Concentrations ofNO3-N varied considerably among watersheds andare related to DOC:DON ratios in streamwater. AnnualDIN exports were negatively correlated withstreamwater DOC:DON ratios, indicating that theseratios might be a useful index of N status of uplandforests.  相似文献   

13.
Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha?1 year?1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha?1 year?1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha?1 year?1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of ?0.9 kg N ha?1 year?1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (?1.6 kg N ha?1 year?1), which occurred exclusively as nitrate (NO3 ?). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 ? delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.  相似文献   

14.
Sampling spatial and temporal variation in soil nitrogen availability   总被引:18,自引:0,他引:18  
There are few studies in natural ecosystems on how spatial maps of soil attributes change within a growing season. In part, this is due to methodological difficulties associated with sampling the same spatial locations repeatedly over time. We describe the use of ion exchange membrane spikes, a relatively nondestructive way to measure how soil resources at a given point in space fluctuate over time. We used this method to examine spatial patterns of soil ammonium (NH+ 4) and nitrate (NO 3) availability in a mid-successional coastal dune for four periods of time during the growing season. For a single point in time, we also measured soil NH+ 4 and NO 3 concentrations from soil cores collected from the mid-successional dune and from an early and a late successional dune. Soil nitrogen concentrations were low and highly variable in dunes of all ages. Mean NH+ 4 and NO 3 concentrations increased with the age of the dune, whereas coefficients of variation for NH+ 4 and NO 3 concentrations decreased with the age of the dune. Soil NO 3 concentration showed strong spatial structure, but soil NH+ 4 concentration was not spatially structured. Plant-available NH+ 4 and NO 3 showed relatively little spatial structure: only NO 3 availability in the second sampling period had significant patch structure. Spatial maps of NH+ 4 and NO 3 availability changed greatly over time, and there were few significant correlations among soil nitrogen availability at different points in time. NO 3 availability in the second sampling period was highly correlated (r = 0.90) with the initial soil NO 3 concentrations, providing some evidence that patches of plant-available NO 3 may reappear at the same spatial locations at irregular points in time. Received: 20 February 1998 / Accepted: 23 November 1998  相似文献   

15.
This study presents the tidal exchange of ammonium, nitrite + nitrate, phosphate and silicate between two salt marshes and adjacent estuarine waters. Marsh nutrient fluxes were evaluated for Pointe-au-Père and Pointe-aux-épinettes salt marshes, both located along the south shore of the lower St. Lawrence Estuary in Rimouski area (QC, Canada). Using nutrients field data, high precision bathymetric records and a hydrodynamic numerical model (MIKE21-NHD) forced with predicted tides, nutrients fluxes were estimated through salt marsh outlet cross-sections at four different periods of the year 2004 (March, May, July and November). Calculated marsh nutrient fluxes are discussed in relation with stream inputs, biotic and abiotic marsh processes and the incidence of sea ice cover. In both marshes, the results show the occurrence of year-round and seaward NH4 + fluxes and landward NO2  + NO3 fluxes (ranging from 9.06 to 30.48 mg N day−1 m−2 and from −32.07 to −9.59 mg N day−1 m−2, respectively) as well as variable PO4 3− and Si(OH)4 fluxes (ranging from −3.73 to 6.34 mg P day−1 m−2 and from −29.19 to 21.91 mg Si day−1 m−2, respectively). These results suggest that NO2  + NO3 input to marshes can be a significant source of NH4 + through dissimilatory nitrate reduction to ammonium (DNRA). This NH4 +, accumulating in marsh sediment rather than being removed through coupled nitrification–denitrification or biological assimilation, is exported toward estuarine waters. From average P and Si tidal fluxes analysis, both salt marshes act as a sink during high productivity period (May and July) and as a source, supplying estuarine water during low productivity period (November and March).  相似文献   

16.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

17.
九龙江河口区养虾塘沉积物-水界面营养盐交换通量特征   总被引:5,自引:1,他引:5  
杨平  金宝石  谭立山  仝川 《生态学报》2017,37(1):192-203
通过对九龙江河口区陆基养虾塘水样和沉积物样品采集分析及结合室内模拟实验,探讨了虾塘在不同养殖阶段沉积物-水界面营养盐通量时间变化特征及其主要影响因素。虾塘沉积物向上覆水体释放NO_x~--N(NO_2~--N和NO_3~--N)、NH_4~+-N和PO_4~(3-)-P能力均呈现随养殖时间推移而降低的特征。沉积物在养殖中期和后期分别呈现对上覆水体NO_x~--N和PO_4~(3-)-P的吸收现象,但总体表现为释放(平均通量分别为(1.87±1.15)、(1.58±0.52)mg m~(-2)h~(-1)和(1.22±0.62)mg m~(-2)h~(-1))。沉积物-水界面溶解无机氮交换以NH_4~+-N为主(沉积物平均释放通量为(46.18±13.82)mg m~(-2)h~(-1))。沉积物间隙水与上覆水间的营养盐浓度差(梯度)及温度对上述交换通量的时间动态特征具有重要调控作用。研究结果表明养殖初期或中期沉积物较高的无机氮(尤其是NO_2~--N和NH_4~+-N)释放是养殖塘水质恶化的一个极具潜力的污染内源,可能会对虾的健康生长产生负面效应,控制沉积物无机氮释放是养虾塘养殖初期和中期重要的日常管理活动之一。  相似文献   

18.
Supplying both N forms (NH4 ++NO3 ) to the maize (Zea mays L.) plant can optimize productivity by enhancing reproductive development. However, the physiological factors responsible for this enhancement have not been elucidated, and may include the supply of cytokinin, a growth-regulating substance. Therefore, field and gravel hydroponic studies were conducted to examine the effect of N form (NH4 ++NO3 versus predominantly NO3 ) and exogenous cytokinin treatment (six foliar applications of 22 μM 6-benzylaminopurine (BAP) during vegetative growth versus untreated) on productivity and yield of maize. For untreated plants, NH4 ++NO3 nutrition increased grain yield by 11% and whole shoot N content by 6% compared with predominantly NO3 . Cytokinin application to NO3 -grown field plants increased grain yield to that of NH4 ++NO3 -grown plants, which was the result of enhanced dry matter partitioning to the grain and decreased kernel abortion. Likewise, hydroponically grown maize supplied with NH4 ++NO3 doubled anthesis earshoot weight, and enhanced the partitioning of dry matter to the shoot. NH4 ++NO3 nutrition also increased earshoot N content by 200%, and whole shoot N accumulation by 25%. During vegetative growth, NH4 ++NO3 plants had higher concentrations of endogenous cytokinins zeatin and zeatin riboside in root tips than NO3 -grown plants. Based on these data, we suggest that the enhanced earshoot and grain production of plants supplied with NH4 ++NO3 may be partly associated with an increased endogenous cytokinin supply.  相似文献   

19.
Nitrogen (N) has been considered a limiting nutrient to many aquatic and terrestrial ecosystems. However, human activity has resulted in increased atmospheric N deposition worldwide such that N pollution is now altering ecosystem function in many locations. Research on atmospheric deposition has focused primarily on inorganic nitrogen (DIN; NH4 +-N + NO3 -N) via rainwater and dry deposition as the main N input to ecosystems. Recently, organic N (ON) has been shown to be an important constituent in rainwater or dry deposition. Here we show that ON dominated (66%) total N in cloudwater from a remote site in southern Chile. Cloudwater from more human-impacted sites in northeastern USA had lower ON concentrations and DIN was dominant. We estimate that cloudwater delivers up to 2 kg ha−1 DIN and 9 kg ha−1 ON annually, compared to less than 1 kg ha−1 of DIN deposition via rainwater, thus it may contribute substantially to the N-economy of Chilean coastal forests. We also suggest that the adjacent ocean, where biologic productivity is high, may be a major source of N in Chilean cloudwater. This proposed marine-terrestrial flux via cloud deposition has not previously been identified and may be an example of the ocean feeding the forest. We suggest that this type of cross boundary flux may be common in other upwelling zones, such as along the west coasts of Africa, North and South America and east India, and warrants further substantiation and investigation. Received 30 June 2000; accepted 18 October 2000  相似文献   

20.
Ecosystem acidification and eutrophication resulting from increased deposition of dissolved inorganic nitrogen (DIN) are issues of increasing global concern. Consequently, costly policy decisions are being implemented to decrease nitrogen oxide (NO x ) emissions. Although declining DIN deposition along with rapid declines of DIN in surface waters have been reported in parts of Europe, the same observation is just emerging in North America. Here we find a significant decline in bulk deposition NO3 during the later part of a 28-year record in southcentral Ontario, Canada. Despite high N retention and substantial inter-annual variability in the long-term record due to periods of drought, we find significant declines in annual NO3 concentrations and export at six out of 11 streams that drain upland-dominated catchments. In contrast, five streams draining primarily wetland-dominated catchments with lower levels of NO3 show no decreasing trend in NO3 concentration or export. The rapid response in stream NO3 to declining atmospheric inputs was observed at sites with historically moderate inputs of DIN (~870 mg m−2 y−1) in bulk deposition. Topographic features such as slope, and related catchment features including wetland cover, appear to influence which catchments will respond positively to declining DIN deposition. These findings force us to revise our original conceptualization of the N saturation status of these catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号