首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
5.
Impaired brain glucose uptake and metabolism precede the appearance of clinical symptoms in Alzheimer disease (AD). Neuronal glucose transporter 3 (GLUT3) is decreased in AD brain and correlates with tau pathology. However, what leads to the decreased GLUT3 is yet unknown. In this study, we found that the promoter of human GLUT3 contains three potential cAMP response element (CRE)-like elements, CRE1, CRE2 and CRE3. Overexpression of CRE-binding protein (CREB) or activation of cAMP-dependent protein kinase significantly increased GLUT3 expression. CREB bound to the CREs and promoted luciferase expression driven by human GLUT3-promoter. Among the CREs, CRE2 and CRE3 were required for the promotion of GLUT3 expression. Full-length CREB was decreased and truncation of CREB was increased in AD brain. This truncation was correlated with calpain I activation in human brain. Further study demonstrated that calpain I proteolysed CREB at Gln28–Ala29 and generated a 41-kDa truncated CREB, which had less activity to promote GLUT3 expression. Importantly, human brain GLUT3 was correlated with full-length CREB positively and with activation of calpain I negatively. These findings suggest that overactivation of calpain I caused by calcium overload proteolyses CREB, resulting in a reduction of GLUT3 expression and consequently impairing glucose uptake and metabolism in AD brain.  相似文献   

6.
Abstract: We have previously shown that in cell extracts from rat striatum, cyclic AMP response element (CRE) binding protein (CREB), rather than AP-1 proteins, preferentially interacts with the CRE-2 element of the proenkephalin second messenger-inducible enhancer, even under conditions in which AP-1 proteins are highly induced. Here we use primary striatal cultures to permit a more detailed analysis of CRE-2 function and protein binding in relevant neural cell types. By transfection we find that in primary striatal cultures, as in transformed cell lines, the CRE-1 and CRE-2 elements are required for significant induction by cyclic AMP. We report that cyclic AMP induction of the proenkephalin gene in striatal cultures is protein synthesis independent, excluding a role for newly synthesized proteins like c-Fos. We also show that cyclic AMP induces CREB phosphorylation and that phosphorylated CREB interacts strongly with CRE-2 and weakly with CRE-1. The predominant protein bound to CRE-1 is not CREB, however, and remains to be identified. Despite some prior predictions, we do not find a role for c-Fos in cyclic AMP regulation of proenkephalin gene expression in neurons.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号