首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Central to the pathogenicity of Salmonella enterica is the function of a type III secretion system (TTSS) encoded within a pathogenicity island at centisome 63 (SPI-1). An essential component of this system is a supramolecular structure termed the needle complex. Proteins to be delivered into host cells possess specific signals that route them to the type III secretion pathway. In addition, some bacterial proteins have signals that deliver them to the secretion complex to either become their structural components or exert their function at that location. One of these proteins is InvJ, which controls the length of the needle substructure of the needle complex. In this study, we have analysed the signal that targets InvJ to the TTSS. We found that amino acid residues 4 to 7 of InvJ are necessary and sufficient to mediate secretion of InvJ or a reporter protein in a TTSS-dependent manner. InvJ secretion was found to be essential for its function in needle length determination, effector protein secretion and bacterial invasion of epithelial cells. Frameshift mutagenesis analysis indicated that the InvJ type III secretion signal sequence tolerates significant alterations in its amino acid sequence without affecting InvJ secretion. Introduction of silent mutations in the secretion signal coding sequence that result in drastically different predicted mRNA folds had no effect on InvJ secretion or expression.  相似文献   

2.
The invasion-associated type III secretion system of Salmonella enterica assembles as a supra-molecular structure, termed needle complex, which spans the bacterial envelope. Here, we present evidence for protein-peptidoglycan interactions that modulate the assembly of this organelle. The presence of major membrane components of the needle complex (PrgH, PrgK and InvG) and InvH, required for efficient assembly of the organelle, was examined in peptidoglycan purified by extensive boiling of bacteria in 4% SDS. InvH, PrgH and PrgK, but not InvG, were detected in this purified material. InvH was present in the peptidoglycan in higher relative amounts than PrgH or PrgK, and was the only protein efficiently bound to peptidoglycan in cross-linking experiments. Analysis in mutants defective for needle complex proteins showed that the needle proteins PrgI and PrgJ and, to a lesser extent, InvH, sustain the association of PrgH and PrgK with peptidoglycan. In contrast, the association of InvH with peptidoglycan did not necessitate other needle complex proteins. Functional analysis showed that the association of InvH, PrgH and PrgK with peptidoglycan is abolished in live bacteria carrying structural modifications in the peptidoglycan. The loss of these interactions caused a marked reduction in the number of needle complexes and, concomitantly, in protein secretion and bacterial invasion of cultured eukaryotic cells. Altogether, these data provide the first evidence for an association between proteins of the Salmonella needle complex and the peptidoglycan. In addition, we demonstrate that these protein-peptidoglycan interactions are critical for an efficient and correct assembly of this specialized organelle.  相似文献   

3.
4.
Maturation and maintenance of the intracellular vacuole in which Salmonella replicates is controlled by virulence proteins including the type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2). Here, we show that, several hours after bacterial uptake into different host cell types, Salmonella induces the formation of an F-actin meshwork around bacterial vacuoles. This structure is assembled de novo from the cellular G-actin pool in close proximity to the Salmonella vacuolar membrane. We demonstrate that the phenomenon does not require the Inv/Spa type III secretion system or cognate effector proteins, which induce actin polymerization during bacterial invasion, but does require a functional SPI-2 type III secretion system, which plays an important role in intracellular replication and systemic infection in mice. Treatment with actin-depolymerizing agents significantly inhibited intramacrophage replication of wild-type Salmonella typhimurium . Furthermore, after this treatment, wild-type bacteria were released into the host cell cytoplasm, whereas SPI-2 mutant bacteria remained within vacuoles. We conclude that actin assembly plays an important role in the establishment of an intracellular niche that sustains bacterial growth.  相似文献   

5.
The type III secretion pathway is broadly distributed across many parasitic bacterial genera and serves as a mechanism for delivering effector proteins to eukaryotic cell surface and cytosolic targets. While the effectors, as well as the host responses elicited, differ among type III systems, they all utilize a conserved set of 9 to 11 proteins that together form a bacterial envelope-associated secretory organelle or needle complex. The general structure of the needle complex consists of a transenvelope base containing at least three ring-forming proteins (MxiD, MxiJ, and MxiG in Shigella) that is connected to a hollow needle-like extension that projects away from the cell surface. Several studies have shown that the initial steps in needle complex assembly require interactions among the base proteins, although specific details of this process remain unknown. Here we identify a role for another base element in Shigella, MxiM, in interactions with the major outer-membrane-associated ring-forming protein, MxiD. MxiM affects several features of MxiD, including its stability, envelope association, and assembly into homomultimeric structures. Interestingly, many of the effects were also elicited by the inner-membrane-associated base element, MxiJ. We confirmed that MxiM-MxiD and MxiJ-MxiD interactions occur in vivo in the cell envelope, and we present evidence that together these base elements can form a transmembrane structure which is likely an important intermediary in the process of needle complex assembly.  相似文献   

6.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

7.
Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. This ability requires an S. enterica specific locus termed Salmonella pathogenicity island 2 (SPI-2). SPI-2 encodes a type III secretion system that injects effectors encoded within the island into host cell cytosol to promote virulence. SsrAB is a two-component regulator encoded within SPI-2 that was assumed to activate SPI-2 genes exclusively. Here, it is shown that SsrB in fact activates a global regulon. At least 10 genes outside SPI-2 are SsrB regulated within epithelial and macrophage cells. Nine of these 10 SsrB-regulated genes outside SPI-2 reside within previously undescribed regions of the Salmonella genome. Most share no sequence homology with current database entries. However, one is remarkably homologous to human glucosyl ceramidase, an enzyme involved in the ceramide signalling pathway. The SsrB regulon is modulated by the two-component regulatory systems PhoP/PhoQ and OmpR/EnvZ, and is upregulated in the intracellular microenvironment.  相似文献   

8.
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.  相似文献   

9.
Type I strains of Helicobacter pylori (Hp) use a type IV secretion system (T4SS), encoded by the cag pathogenicity island (cag-PAI), to deliver the bacterial protein CagA into eukaryotic cells and to induce interleukin-8 secretion. Translocated CagA is activated by tyrosine phosphorylation involving Src-family kinases. The mechanism and structural basis for type IV protein secretion is not well understood. We describe here, by confocal laser scanning microscopy and field emission scanning electron microscopy, a novel filamentous surface organelle which is part of the Hp T4SS. The organelle is often located at one bacterial pole but can be induced by cell contact also along the lateral side of the bacteria. It consists of a rigid needle, covered focally or completely by HP0527 (Cag7 or CagY), a VirB10-homologous protein. HP0527 is also clustered in the outer membrane. The VirB7-homologous protein HP0532 is found at the base of this organelle. These observations demonstrate for the first time by microscopic techniques a complex T4SS-associated, sheathed surface organelle reminiscent to the needle structures of bacterial type III secretion systems.  相似文献   

10.
Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQ(L)) composed of 322 amino acids and a shorter protein (SsaQ(S)) comprising the C-terminal 106 residues of SsaQ(L). SsaQ(L) is essential for SPI-2 T3SS function. Loss of SsaQ(S) impairs the function of the T3SS both ex vivo and in vivo. SsaQ(S) binds to its corresponding region within SsaQ(L) and stabilizes the larger protein. Therefore, SsaQ(L) function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.  相似文献   

11.
Salmonella enterica encodes a type III secretion system (TTSS) within a pathogenicity island located at centisome 63 (SPI-1), which is essential for its pathogenicity. This system mediates the transfer of a battery of bacterial proteins into the host cell with the capacity to modulate cellular functions. The transfer process is dependent on the function of protein translocases SipB, SipC, and SipD. We report here that Salmonella protein InvE, which is also encoded within SPI-1, is essential for the translocation of bacterial proteins into host cells. An S. enterica serovar Typhimurium mutant carrying a loss-of-function mutation in invE shows reduced secretion of SipB, SipC, and SipD while exhibiting increased secretion of other TTSS effector proteins. We also demonstrate that InvE interacts with a protein complex formed by SipB, SipC, and their cognate chaperone, SicA. We propose that InvE controls protein translocation by regulating the function of the Sip protein translocases.  相似文献   

12.
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages. SseB has been considered a putative target of the secretion system on the basis of its similarity with EspA, a protein secreted by the type III secretion system of enteropathogenic Escherichia coli (EPEC). EspA forms a filamentous structure on the bacterial cell surface and is involved in translocation of proteins into the eukaryotic cytosol. In this paper, we show that SseB is a secreted protein that associates with the surface of the bacterial cell and might, therefore, also be required for delivery of SPI-2 effector proteins to the eukaryotic cell cytosol. SseB begins to accumulate inside the bacterial cell when the culture enters early stationary phase. However, SseB is only secreted if the bacteria are grown at low pH or if the pH is shifted after growth from 7.0 to below pH 5.0. The secretion occurs within minutes of acidification and is totally dependent on a functional SPI-2 type III secretion system. As the pH of the Salmonella-containing vacuole inside host cells has been shown to acidify to between pH 4.0 and 5.0, and as SPI-2 gene expression occurs inside host cells, low pH might be a physiological stimulus for SPI-2-mediated secretion in vivo.  相似文献   

13.
Type III secretion systems, designed to deliver effector proteins across the bacterial cell envelope and the plasma membrane of the target eukaryotic cell, are involved in subversion of eukaryotic cell functions in a variety of human, animal and plant pathogens. In enteropathogenic Escherichia coli (EPEC), several protein substrates for the secretion apparatus were identified, including EspA, EspB and EspD. EspA is a structural protein and the major component of a large transiently expressed filamentous surface organelle that forms a direct link between the bacterium and the host cell, whereas EspD and EspB seem to form the mature translocation pore. Recent studies of the type III secretion systems of Shigella and Salmonella pathogenicity island (SPI)-1 revealed the existence of a macromolecular complex that spans both bacterial membranes and consists of a basal structure with two upper and two lower rings and a needle-like projection that extends outwards from the bacterial surface. MxiH ( Shigella ) and PrgI ( Salmonella ) are the main components of the needle of the type III secretion complex. A needle-like complex has not yet been reported in EPEC. In this study, we investigated EscF, a protein sharing sequence similarity with MxiH and PrgI. We report that EscF is required for type III protein secretion and EspA filament assembly. Moreover, we show that EscF binds EspA, suggesting that EspA filaments are an extension of the type III secretion needle complexes in EPEC.  相似文献   

14.
The type III secretion system (TTSS) encoded by Salmonella Pathogenicity Island 2 (SPI-2) is required for systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. The SPI-2 TTSS is activated after internalization of bacteria by host cells, and translocates effector proteins into and across the vacuolar membrane, where they interfere with several host cell functions. Here, we investigated the function of SsaM, a small protein encoded within SPI-2. An ssaM deletion mutant had virulence and intracellular replication defects comparable to those of a SPI-2 TTSS null mutant. Although the ssaM mutant was able to secrete the effector protein SseJ in vitro, it failed to translocate SseJ into host cells, and to secrete the translocon proteins SseB, SseC and SseD in vitro. This phenotype is similar to that of a strain carrying a mutation in the SPI-2 gene spiC, whose product is reported to be an effector involved in trafficking of the Salmonella vacuole in macrophages. Both ssaM and spiC mutants were found to oversecrete the SPI-2 effector proteins SseJ and PipB in vitro. Fractionation assays and immunofluorescence microscopy were used to investigate the localization of SsaM and SpiC in macrophages. No evidence for translocation of these proteins was obtained. The similar phenotypes of the ssaM and spiC mutants suggested that they might be involved in the same function. Pull-down and co-immune precipitation experiments showed that SpiC and SsaM interact within the bacterial cell. We propose that a complex involving SsaM and SpiC distinguishes between translocators and effector proteins, and controls their ordered secretion through the SPI-2 TTSS.  相似文献   

15.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.  相似文献   

16.
17.
Salmonella species translocate virulence effector proteins from the bacterial cytoplasm into mammalian host cells by means of a type III secretion apparatus, encoded by the pathogenicity island-1 (SPI-1). Little is known about the assembly and structure of this secretion apparatus, but the InvG protein is essential and could be an outer membrane secretion channel for the effector proteins. We observed that in recombinant Escherichia coli , the yield of InvG was enhanced by co-expression of InvH, and showed that mutation of invH decreased the level of InvG in wild-type Salmonella typhimurium . In E. coli , InvG alone was able to form an SDS-resistant multimer, but InvG localization to the outer membrane was dependent upon InvH, a lipoprotein itself located in the outer membrane, and no other SPI-1 specific protein. InvG targeted to the outer membrane by InvH became accessible to extracellular protease. InvG and InvH did not, however, appear to form a stable complex. Electron microscopy of InvG membrane protein purified from E. coli revealed that it forms an oligomeric ring-like structure with inner and outer diameters, 7 nm and 15 nm respectively.  相似文献   

18.
Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号