首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
A flocculent strain of Zymomonas mobilis was used for ethanol production from Jerusalem Artichoke juice containing 113-245 g/L sugar in batch fermentation. The kinetic and yields parameters are calculated using a new method based on polynomial equations for the variation of biomass, ethanol, and sugar concentrations with time. The results show that. Z. mobilis can convert rapidly and efficiently Jerusalem Artichoke juice to ethanol. When a sugar concentration of 248 gL was used, 100 g/L ethanol was formed with an ethanol yield based on sugar utilized of 0.47 g/g (92% of theoretical LP).  相似文献   

2.
The inhibition of substrate and products on the growth of Actinobacillus succinogenes in fermentation using glucose as the major carbon source was studied. A. succinogenes tolerated up to 143 g/L glucose and cell growth was completely inhibited with glucose concentration over 158 g/L. Significant decrease in succinic acid yield and prolonged lag phase were observed with glucose concentration above 100 g/L. Among the end-products investigated, formate was found to have the most inhibitory effect on succinic acid fermentation. The critical concentrations of acetate, ethanol, formate, pyruvate and succinate were 46, 42, 16, 74, 104 g/L, respectively. A growth kinetic model considering both substrate and product inhibition is proposed, which adequately simulates batch fermentation kinetics using both semi-defined and wheat-derived media. The model accurately describes the inhibitory kinetics caused by both externally added chemicals and the same chemicals produced during fermentation. This paper provides key insights into the improvement of succinic acid production and the modelling of inhibition kinetics.  相似文献   

3.
This work presents the development of an unstructured kinetic model incorporating the differing degrees of product, substrate, and pH inhibition on the kinetic rates of ethanol fermentation by recombinant Zymomonas mobilis CP4:pZB5 for growth on two substrates. Product inhibition was observed to start affecting the specific growth rate at an ethanol concentration of 20 g/L and the specific productivity at about 35-40 g/L. Specific growth rate was also shown to be more sensitive to inhibition by lowered pH as well. A model for the inhibition of two competing substrates' cellular uptake via membrane transport is proposed. Inhibition functions and model parameters were determined by fitting experimental data to the model. The model was utilized in a nonlinear model predictive control (NMPC) algorithm to control the product concentration during fed-batch fermentation to offset the inhibitory effects of product inhibition. Using the optimal feeding policy determined online, the volumetric productivity of ethanol was improved 16.6% relative to the equivalent batch operation when the final ethanol concentration was reached.  相似文献   

4.
Zymomonas mobilis immobilized on microporous ion exchange resins has previously been shown to allow the attainment of high ethanol productivities in packed-bed bioreactors. The formation of bacterial filaments after several days of continuous operation, however, had resulted in excessive pressure increases across the reactor bed. The present work examines techniques for controlling filament formation by Z. mobilis in two reactor sizes (161 mL and 7.85 L) and a feed glucose concentration of 100 g/L. By controlling the fermentation temperature at 20-25 degrees C it has been possible to eliminate filament formation by Z. mobilis and to operate the larger bioreactor for 232 h with an ethanol productivity of 50 g/L h (based on total reactor volume). The rate of ethanol production has been shown to be very sensitive to temperature in the range 20-30 degrees C, and it is likely that slightly higher temperatures than those used in this study will improve ethanol productivity while still permitting long-term operation.  相似文献   

5.
Summary A cellulose hydrolysate from Aspen wood, containing mainly glucose, was fermented into ethanol by a thermotolerant strain MSN77 of Zymomonas mobilis. The effect of the hydrolysate concentration on fermentation parameters was investigated. Growth parameters (specific growth rate and biomass yield) were inhibited at high hydrolysate concentrations. Catabolic parameters (specific glucose uptake rate, specific ethanol productivity and ethanol yield) were not affected. These effects could be explained by the increase in medium osmolality. The results are similar to those described for molasses based media. Strain MSN77 could efficiently ferment glucose from Aspen wood up to a concentration of 60 g/l. At higher concentration, growth was inhibited.Nomenclature S glucose concentration (g/l) - X biomass concentration (g/l) - P ethanol concentration (g/l) - C conversion of glucose (%) - t fermentation time (h) - qS specific glucose uptake rate (g/g.h) - qp specific ethanol productivity (g/g.h) - YINX/S biomass yield (g/g) - Yp/S ethanol yield (g/g) - specific growth rate (h-1)  相似文献   

6.
The production of ethanol by Zymomonas mobilis NRRL B-4286 was studied in fed-batch cultures. Initial percent (w/v) glucose, rate of feed, and quantity of 50%; (w/v) glucose feed were varied. Glucose inhibition of growth rate occurred at concentrations greater than 8% (w/) Feed was begun after 4 h incubation. Feed volume was ca. 36%; of starting batch volume to get ca. 10%; (w/v) ethanol at harvest. The range of feed rates studied varied from 16%; batch volume/h (glucose concentration increased to an inhibitory level) to 4%; batch volume/h (glucose concentration dropped rapidly to zero and was limiting). Increasing feed volume to 46%; of starting volume at the best feed rate (ca. 10%; feed volume/h) increased final ethanol concentration to 11.3%; (w/v). However, the resultant increase in fermentation time from ca. 21 to 29 h decreased ethanol volumetric productivity from 5.2 to 4.6 g/L h.  相似文献   

7.
Fermentations utilizing strains of Zymomonas mobilis, in place of the traditional yeasts, have been proposed due their ethanol yields being close to theoretical. Ethanol production from sugar cane molasses was analyzed under different culture conditions using Z. mobilis in batch fermentation. The total reducing sugars (TRS) concentrations in the molasses, temperature, agitation and culture time effects were studied simultaneously through factorial design. The best conditions for ethanol production were 200 g L(-1) of total reducing sugars in the molasses, temperature of 30 degrees C and static culture and time of fermentation of 48 h, achieving 55.8 g L(-1). The pH of the medium was kept constant during the experiments, showing that molasses presents a buffering effect.  相似文献   

8.
Zymomonas mobilis cells were entrapped in K. carrageenan. Growth was observed with the immobilized cell preparation. The kinetic and yield parameters for the conversion of fructose to ethanol were nearly identical to free cells. The same preparation of immobilized cells was used in six repeated batch runs and at the end sixthbatch fructose was converted to ethanol more rapidly and efficiently with ethanol productivity of 14 g/L h and 96% conversion of fructose. The effect of high fructose and ethanol levels on specific fructose uptake rate and ethanol productivity was studied and quantitatively analyzed.  相似文献   

9.
In this study, sodium gluconate was applied as a novel carbon source for the fuel ethanol production using an engineered Escherichia coli strain KO11 in batch fermentations. Ethanol and acetic acid were produced as two major products as well as small amount of lactic acid during the fermentation. Compared to the conventional carbon source glucose, the bioconversion of sodium gluconate possessed two distinct advantages: faster utilization rate of sodium gluconate (1.66 g/L per h) compared to glucose (0.996 g/L per h) and no requirement for pH control during fermentation. A general inhibition model including both substrate and products inhibitory effects was proposed, which adequately simulated batch fermentation kinetics at various concentrations of sodium gluconate. All of the products showed inhibitory effects on cell growth. The order of the inhibitory strength of all products and substrate was for the first time clarified in this study. Acetic acid was the most inhibitory product mitigating the cell growth, followed by ethanol and lactic acid. Sodium gluconate stimulated cell growth when its concentration was below 16 g/L, while it inhibited the cell growth when the concentration was above this concentration. It completely inhibited the cell growth when the concentration was 325 g/L. The high value of both the coefficient of determination (R 2) and the adjusted R 2 verified the good fit of the model. This paper provides key insights into further engineering these strains to improve ethanol production.  相似文献   

10.
Fermentation of sugar by Saccharomyces cerevisiae, for production of ethanol in an immobilized cell reactor (ICR) was successfully carried out to improve the performance of the fermentation process. The fermentation set-up was comprised of a column packed with beads of immobilized cells. The immobilization of S. cerevisiae was simply performed by the enriched cells cultured media harvested at exponential growth phase. The fixed cell loaded ICR was carried out at initial stage of operation and the cell was entrapped by calcium alginate. The production of ethanol was steady after 24 h of operation. The concentration of ethanol was affected by the media flow rates and residence time distribution from 2 to 7 h. In addition, batch fermentation was carried out with 50 g/l glucose concentration. Subsequently, the ethanol productions and the reactor productivities of batch fermentation and immobilized cells were compared. In batch fermentation, sugar consumption and ethanol production obtained were 99.6% and 12.5% v/v after 27 h while in the ICR, 88.2% and 16.7% v/v were obtained with 6 h retention time. Nearly 5% ethanol production was achieved with high glucose concentration (150 g/l) at 6 h retention time. A yield of 38% was obtained with 150 g/l glucose. The yield was improved approximately 27% on ICR and a 24 h fermentation time was reduced to 7 h. The cell growth rate was based on the Monod rate equation. The kinetic constants (K(s) and mu(m)) of batch fermentation were 2.3 g/l and 0.35 g/lh, respectively. The maximum yield of biomass on substrate (Y(X-S)) and the maximum yield of product on substrate (Y(P-S)) in batch fermentations were 50.8% and 31.2% respectively. Productivity of the ICR were 1.3, 2.3, and 2.8 g/lh for 25, 35, 50 g/l of glucose concentration, respectively. The productivity of ethanol in batch fermentation with 50 g/l glucose was calculated as 0.29 g/lh. Maximum production of ethanol in ICR when compared to batch reactor has shown to increase approximately 10-fold. The performance of the two reactors was compared and a respective rate model was proposed. The present research has shown that high sugar concentration (150 g/l) in the ICR column was successfully converted to ethanol. The achieved results in ICR with high substrate concentration are promising for scale up operation. The proposed model can be used to design a lager scale ICR column for production of high ethanol concentration.  相似文献   

11.
The inhibition of the maximum specific growth and fermentation rate of Zymomonas mobilis by ethanol was studied in turbidostat cultures at constant and stepwise changed ethanol concentrations. Up to 50 g/L ethanol, the inhibition kinetics can be approximated by a linear relationship between the specific growth rate and the ethanol concentration. Above this level, deviations from this linearity are observed. The specific fermentation rates were less inhibited by ethanol than was the specific growth rate. The maximum ethanol concentration achieved was 72 g/L.The response time for the adaptation of a turbidstat culture to step changes in the ethanol concentration was markedly dependent on the concentration level, the response time being large at high ethanol concentrations.  相似文献   

12.
A personal computer-based on-line monitoring and controlling system was developed for the fermentation of microorganism. The on-line HPLC system for the analysis of glucose and ethanol in the fermentation broth was connected to the fermenter via an auto-sampling equipment, which could perform the pipetting, filtration and dilution of the sample and final injection onto the HPLC through automation based on a programmed procedure. The A/D and D/A interfaces were equipped in order to process the signals from electrodes and from the detector of HPLC, and to direct the feed pumps, the motor of stirrer and gas flow-rate controller. The software that supervised the control of the stirring speed, gas flow-rate, pH value, feed flow-rate of medium, and the on-line measurement of glucose and ethanol concentration was programmed by using Microsoft Visual Basic under Microsoft Windows. The signal for chromatographic peaks from on-line HPLC was well captured and processed using an RC filter and a smoothing algorithm. This monitoring and control system was demonstrated to be effective in the ethanol fermentation of Zymomonas mobilis operated in both batch and fed-batch modes. In addition to substrate and product concentrations determined by on-line HPLC, the biomass concentration in Z. mobilis fermentation could also be on-line estimated by using the pH control and an implemented software sensor. The substrate concentration profile in the fed-back fermentation followed well the set point profile due to the fed-back action of feed flow-rate control.  相似文献   

13.
Summary Z.mobilis is strain ZM4 was grown on 250 g/l fructose and sucrose media in batch culture and on 100 and 150 g/l sucrose media in continuous culture. With fructose, a significant reduction in the growth rate and the cell yield was apparent although the other kinetic parameters were similar to those previously reported for fermentation of glucose. With sucrose the major differences were a reduction in ethanol yield, (due to levan formation) and a lower final ethanol concentration. Ethanol inhibition of sucrose metabolism occurred at relatively low ethanol concentrations compared to those inhibiting glucose metabolism.  相似文献   

14.
Saccharomyces cerevisiae 424A (LNH-ST) strain was used for fermentation of glucose and xylose. Growth kinetics and ethanol productivity were calculated for batch fermentation on media containing different combinations of glucose and xylose to give a final sugar concentration of 20+/-0.8 g/L. Growth rates obtained in pure xylose-based medium were less than those for media containing pure glucose and glucose-xylose mixtures. A maximum specific growth rate micro(max) of 0.291 h(-1) was obtained in YPD medium containing 20 g/L glucose as compared to 0.206 h(-1) in YPX medium containing 20 g/L xylose. In media containing combinations of glucose and xylose, glucose was exhausted first followed by xylose. Ethanol production on pure xylose entered log phase during the 12-24h period as compared to the 4-10h for pure glucose based medium using 2% inoculum. When glucose was added to fermentation flasks which had been initiated on a pure xylose-based medium, the rate of xylose usage was reduced indicating cosubstrate inhibition of xylose consumption by glucose.  相似文献   

15.
AIMS: To examine the potential of Zymomonas mobilis entrapped into polyvinylalcohol (PVA) lens-shaped immobilizates in batch and continuous ethanol production. METHODS AND RESULTS: Cells, free or immobilized in PVA hydrogel-based lens-shaped immobilizates - LentiKats, were cultivated on glucose medium in a 1 l bioreactor. In comparison with free cell cultivation, volumetric productivity of immobilized batch culture was nine times higher (43.6 g l(-1) h(-1)). The continuously operated system did not improve the efficiency (volumetric productivity of the immobilized cells 30.7 g l(-1) h(-1)). CONCLUSIONS: We demonstrated Z. mobilis capability, entrapped into LentiKats, in the cost-efficient batch system of ethanol production. SIGNIFICANCE AND IMPACT OF THE STUDY: The results reported here emphasize the potential of bacteria in combination with suitable fermentation technology in industrial scale. The innovation compared with traditional systems is characterized by excellent long-term stability, high volumetric productivity and other technological advantages.  相似文献   

16.
Summary Zymomonas mobilis and recombinant Escherichia coli B (pLOI297) were compared in side-by-side batch fermentations using a synthetic cellulose hydrolysate (glucose/salts) medium with pH control at 6.0 and an inoculation cell density of 35–50 mg dry wt. cells/L. At a nominal glucose concentration of 6%, both cultures achieved near maximal theoretical ethanol yields; however, the Z. mobilis fermentation was complete at 13h compared to 33h for the E.coli fermentation. With approx.12% glucose, the Z. mobilis fermentation was complete in 20h with a process yield of 0.49 g ethanol/g added glucose compared to the E. coli fermentation which remained 20% incomplete after 6 days resulting in a process yield of only 0.32 g/g. Nutrient supplementation (10g tryptone/L) resulted in complete fermentation of 12% glucose (pH 6.3) by the recombinant E. coli in 4 days, with a yield of 0.48 g/g.  相似文献   

17.
The kinetics of batch fermentation during the growth of S. cerevisiae ATCC 36859 was studied in various glucose/fructose mixtures. It was found that the growth is inhibited equally by glucose and fructose even though fructose is not consumed to any large extent by the yeast under the conditions tested here. The inhibition of growth by the substrate and ethanol is represented by linear equations. These equations were combined with the MONOD expression in order to formulate equations for the biomass growth, glucose and fructose consumption and ethanol production. Parameter estimates were obtained by fitting these equations to batch fermentation data and so developing models which indicate that the growth is completely inhibited when 62 g/l ethanol is produced by the yeast, while glucose consumption and ethanol production continue up to an ethanol concentration of 152 g/l. Products containing a high concentration of fructose are best produced by using a high initial biomass concentration.  相似文献   

18.
Summary Substrate inhibition in batch fermentations can be avoided by employing the fed-batch technique in which substrate concentration is kept at low levels by a programmed feed rate. This research demonstrates the use of a heat-flux sensor to control substrate addition by continuously monitoring evolving heat which is proportional to fermentation rate. Batch fermentation with 240 g/L glucose in the medium was compared with a fed-batch starting with 20 g/L glucose in the medium and increased, with 500 g/L glucose, to a final equivalent glucose concentration of 240 g/L. The batch fermentation produced 106 g/L ethanol in 39 hr at 2.72 g/L/h, while the best fed-batch produced 114 g/L ethanol in 34 hr at 3.35 g/L/h with the same nutrients.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

19.
研究纤维素酸水解产生的4种副产物乙酸、甲酸、糠醛、5-羟甲基糠醛及发酵产物乙醇对Kluyveromyces marxianus 1727共发酵葡萄糖和木糖的影响。结果表明:5.0 g/L乙酸和1.0 g/L甲酸对葡萄糖和木糖共发酵具有明显的抑制作用;1.0 g/L糠醛和5-羟甲基糠醛基本不影响K.marxianus 1727发酵葡萄糖,且能够被K.marxianus1727转化为毒性相对较低的物质。由于5-羟甲基糠醛的转化速率慢,对K.marxianus 1727发酵木糖的抑制程度大于糠醛。乙醇对K.marxianus 1727发酵木糖具有抑制作用,当乙醇质量浓度大于20 g/L时,生物量及木糖利用率约是对照的44%和70%。  相似文献   

20.
Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high level of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号