首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dual-substrate utilization pattern in cultures of five ruminal strains of Butyrivibrio fibrisolvens growing on glucose and xylose was investigated. Strains ATCC 19171 and 86 utilized glucose and xylose simultaneously. Other strains exhibited diauxic growth. Strains X1 and CE 51 exhibited classical diauxic growth in which glucose was utilized during the first phase. Strain X2D62 displayed atypical diauxic growth in which slow utilization of xylose was followed by rapid utilization of glucose after the xylose depletion. The ATP-dependent phosphorylation of glucose was found in all strains tested. The phosphoenolpyruvate-dependent phosphorylation of glucose was detected only in B. fibrisolvens CE 51.  相似文献   

2.
Xylanolytic Activity of Clostridium acetobutylicum   总被引:12,自引:9,他引:3       下载免费PDF全文
Of 20 strains of Clostridium spp. screened, 17 hydrolyzed larch wood xylan. Two strains of Clostridium acetobutylicum, NRRL B527 and ATCC 824, hydrolyzed xylan but failed to grow on solid media with larch xylan as the sole carbon source; however, strain ATCC 824 was subsequently found to grow on xylan under specified conditions in a chemostat. These two strains possessed cellulolytic activity and were therefore selected for further studies. In cellobiose-limited continuous cultures, strain NRRL B527 produced maximum xylanase activity at pH 5.2. Strain ATCC 824 produced higher xylanase, xylopyranosidase, and arabinofuranosidase activities in chemostat culture with xylose than with any other soluble carbon source as the limiting nutrient. The activities of these enzymes were markedly reduced when the cells were grown in the presence of excess glucose. The xylanase showed maximum activity at pH 5.8 to 6.0 and 65°C. The enzyme was stable on the alkaline side of pH 5.2 but was unstable below this pH value. The extracellular xylanolytic activity from strain ATCC 824 hydrolyzed 12% of the larch wood xylan during a 24-h incubation period, yielding xylose, xylobiose, and xylotriose as the major hydrolysis products. Strain ATCC 824, after being induced to grow in batch culture in xylan medium supplemented with a low concentration of xylose, failed to grow reproducibly in unsupplemented xylan medium. A mutant obtained by mutagenesis with ethyl methanesulfonate was able to grow reproducibly in batch culture on xylan. Both the parent strain and the mutant were able to grow with xylan as the sole source of carbohydrate in continuous culture with the pH maintained at either 5.2 or 6.0. Under these conditions, the cells utilized approximately 50% of the xylan.  相似文献   

3.
A rumen strain ofMegasphaera elsdenii was grown on glucose and lactate in monensin-free and monensin-supplemented medium (10 mg/L). Monensin had no effect on growth rate, growth yields, metabolic pattern and composition of cells. Growth yields of dry matter and protein were higher in cultures supplied with glucose than in cultures supplied with lactate. The bacterium compensated the lower gain of energy from fermentation of lactate by rapid utilization of this substrate. Cells grown on glucose contained more saccharide and less protein than lactate-grown cells.  相似文献   

4.
Summary Two strains of Candida shehatae (ATCC 22984 and CSIR Y492) exhibit marked variability in colony size (petite, grande) and respiratory activity (tetrazolium reaction) when grown on glucose, xylose, and--especially--xylitol agar. The transitions occur in both directions at high frequency. Strains showing a negative or weak tetrazolium reaction on xylitol ferment xylose better than those showing a strong tetrazolium reaction. The type strain (ATCC 34887) shows stable colonial morphology with moderate respiratory and fermentative activities. The objective of this report is to demonstrate these variations.  相似文献   

5.
Due to catabolite repression in microorganisms, sugar mixtures cannot be metabolized in a rapid and efficient manner. Therefore, the development of mutant strains that avoid this regulatory system is of special interest to fermentation processes. In the present study, the utilization of sugar mixtures by an Escherichia coli mutant strain devoid of the phosphotransferase system (PTS) was characterized. This mutant can transport glucose (PTS- Glucose+ phenotype) by a non-PTS mechanism as rapidly as its wild-type parental strain. In cultures grown in minimal medium supplemented with glucose-xylose or glucose-arabinose mixtures, glucose repressed arabinose- or xylose-utilization in the wild-type strain. However, under the same culture conditions with the PTS- Glucose+ mutant, glucose and arabinose were co-metabolized, but glucose still exerted a partial repressive effect on xylose consumption. In cultures growing with a triple mixture of glucose-arabinose-xylose, the wild-type strain sequentially utilized glucose, arabinose and finally, xylose. In contrast, the PTS- Glucose+ strain co-metabolized glucose and arabinose, whereas xylose was utilized after glucose-arabinose depletion. As a result of glucose-arabinose co-metabolism, the PTS- Glucose+ strain consumed the total amount of sugars contained in the culture medium 16% faster than the wild-type strain. [14C]-Xylose uptake experiments showed that in the PTS- Glucose+ strain, galactose permease increases xylose transport capacity and the observed partial repression of xylose utilization depends on the presence of intracellular glucose.  相似文献   

6.
7.
AIMS: To compare fermentation pattern in cultures of Bacteroides caccae supplied with pectin and glucose, and identify enzymes involved in metabolism of pectin. METHODS AND RESULTS: A strain KWN isolated from the rabbit caecum was used. Fermentation pattern, changes of viscosity and enzyme reactions products were determined. Cultures grown on pectin produced significantly more acetate and less formate, lactate, fumarate and succinate than cultures grown on glucose. Production of cell dry matter and protein per gram of substrate used was the same in pectin- and glucose-grown cultures. The principal enzymes that participated in the metabolism of pectin were extracellular exopectate hydrolase (EC 3.2.1.67), extracellular endopectate lyase (EC 4.2.2.2) and cell-associated 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (EC 4.1.2.14). The latter enzyme is unique to the Entner-Doudoroff pathway. Activities of pectinolytic enzymes in cultures grown on glucose were low. Activity of KDPG aldolase was similar in pectin- and glucose-grown cells. CONCLUSIONS: Metabolites and activities of pectin-degrading enzymes differed in cultures of B. caccae KWN grown on pectin and glucose. Yields of dry matter and protein were the same on both substrates. SIGNIFICANCE AND IMPACT OF THE STUDY: Information on metabolism of pectin in animal strains of Bacteroides is incomplete. This study extends the knowledge on metabolism in bacteria from the rabbit caecum.  相似文献   

8.
Fermentation pattern and yields of microbial protein were investigated in cultures of the rabbit caecal contents supplied with glucose, xylose, starch, pectin and xylan. Rabbits at the age of 4 weeks (before weaning) and 3 months were slaughtered, their caecal contents added at 1.1% to growth media and incubated anaerobically at 39°C for 18 h. Caecal microorganisms of 4‐week‐old rabbits produced no methane and caproate, less butyrate, but more propionate than microorganisms of 3‐month‐old rabbits. In both groups of rabbits, fermentation of xylose produced significantly more propionate and less butyrate than fermentation of glucose. More propionate and less acetate was formed from starch than from pectin. In caecal cultures from 4‐week‐old rabbits with pectin, the molar percentages of acetate was significantly higher and percentages of other short‐chain fatty acids (SCFA) lower than in cultures with starch or xylan. In cultures from 3‐month‐old rabbits, fermentation of pectin and xylan produced similar SCFA profiles, different from SCFA molar composition in cultures with starch. Average production of microbial protein was 129mg per lg of carbohydrate digested (range 110 to 141mg/g). Protein yields were the same on glucose and xylose, but nonsignificantly higher on starch than on pectin and xylan. It can be concluded that the characteristics of substrate affected fermentation pattern in mixed cultures of rabbit caecal microorganisms. Substrate effects on protein yields were not statistically significant, due to high variation.  相似文献   

9.
Phaffia rhodozyma strains ATCC 24202, ATCC 24203, ATCC 24228, ATCC 24229, ATCC 24261, NRRL Y-10921, NRRL Y-10922 and NRRL Y-17268 were grown on culture media containing glucose, sucrose or xylose as carbon sources. Carotenoids were extracted from biomass and analyzed by HPLC with diode-array detection. The carotenoid profiles depended on both the strain considered and the carbon source employed. Astaxanthin, the main pigment found in P. rhodozyma, accounted for 42–91% of total carotenoids. Other carotenoids such as canthaxanthin, echinenone, 3-hydroxyechinenone, lycopene, 4-hydroxy-3′, 4′-didehydro-β-ψ-carotene and phoenicoxanthin were detected. The highest volumetric carotenoid concentration (3.60 mg L−1) was obtained with strain NRRL Y-17268 growing on xylose. In this case, astaxanthin accounted for 82% of total carotenoids. Received 29 May 1997/ Accepted in revised form 08 August 1997  相似文献   

10.
In the respiro-fermentative region of aerobic chemostat cultures at steady state, Saccharomyces cerevisiae CBS 8066 produced high concentrations of ethanol with concomitant low levels of residual glucose which followed Monod kinetics. By contrast, very high residual glucose concentrations were observed in cultures of S. cerevisiae strains ATCC 4126 and NRRL Y132 at dilution rates above 60% of the washout dilution rate, resulting in much lower ethanol concentrations, even though clearly glucose-limited at lower dilution rates in the respiratory region. The addition of a vitamin mixture resulted in decreased residual glucose concentrations in respiro-fermentative cultures of all three strains, but the effect was much more pronounced with strains ATCC 4126 and NRRL Y132. Meso-inositol was mainly responsible for this effect, although with strain ATCC 4126 other vitamins as well as an amino acid mixture were also required to minimise the steady-state residual glucose levels. The residual glucose concentration in continuous culture was, therefore, greatly dependent on the growth factor requirements of the particular yeast strain, which apparently increased on increasing the dilution rate into the respiro-fermentative region. The strain differences with respect to growth factor requirements at high dilution rates, which were not evident at low dilution rates, had a profound effect on the kinetics of glucose assimilation in aerobic chemostat culture.  相似文献   

11.
Summary The relative contributions of lactate inhibition and the generation of sterile (undividing) cells to the low xylose utilisation rate of Lactococcus lactis IO-1 was investigated. The lactate inhibition constant of xylose grown cells was shown to be 9.3 times more than that of glucose grown cells. However, the sterile cell production rate and LDH inactivation rate of the xylose cultures were at least 10 times less than the glucose cultures. Thus, it is suggested that the slower substrate consumption rate in xylose medium is caused mainly by the large inhibition constant for the end product.  相似文献   

12.
Two industrial effluents, a pre-fermentation effluent and a post-fermentation effluent from a wheat starch production plant, were used as substrates for fuel ethanol production in anaerobic batch cultures using minimal nutritional amendment. The performances of three metabolically engineered xylose-utilizing Saccharomyces cerevisiae strains: TMB 3001 expressing XYL1, XYL2 and XKS1, redox metabolism modulated CPB.CR1 and glucose de-repressed CPB.CR2, as well as a reference strain CEN.PK 113-7D not fermenting xylose, were evaluated. For the recombinant strains a glucose consumption phase preceded the xylose consumption phase. In both effluents, biomass and ethanol production occurred predominantly during the glucose consumption phase, whereas xylitol and glycerol formation were predominant in the xylose consumption phase. Total specific ethanol productivities on glucose were 6-fold higher than on xylose in the pre-fermentation effluent and 15-fold higher than on xylose in the post-fermentation effluent. CPB.CR1 showed impaired growth compared to the two other xylose-utilizing strains, but displayed 18% increased ethanol yield in the post-fermentation effluent.  相似文献   

13.
Two strains of Escherichia coli were engineered to accumulate pyruvic acid from two sugars found in lignocellulosic hydrolysates by knockouts in the aceE, ppsA, poxB, and ldhA genes. Additionally, since glucose and xylose are typically consumed sequentially due to carbon catabolite repression in E. coli, one strain (MEC590) was engineered to grow only on glucose while a second strain (MEC589) grew only on xylose. On a single substrate, each strain generated pyruvate at a yield of about 0.60 g/g in both continuous culture and batch culture. In a glucose‐xylose mixture under continuous culture, a consortium of both strains maintained a pyruvate yield greater than 0.60 g/g when three different concentrations of glucose and xylose were sequentially fed into the system. In a fed‐batch process, both sugars in a glucose‐xylose mixture were consumed simultaneously to accumulate 39 g/L pyruvate in less than 24 h at a yield of 0.59 g/g.  相似文献   

14.
R.J. FORSTER, R.M. TEATHER, J. GONG AND s.-J. DENG. 1996. Complete 16S rDNA sequences of six strains of Butyrivibrio fibrisolvens , including the type strain (ATCC 19171), were determined. The type strain was found to have less than 89% sequence similarity to the other isolates that were examined. The five plasmid-bearing strains formed a closely related cluster and three of these strains (OB156, OB157 and OB192) were very highly related (> 99%), indicating that they are isolates of the same genomic species. The phylogenetic position of Butyrivibrio was found to be within the subphylum Clostridzum, of Gram-positive bacteria. The closest relatives to the type strain were Eubacterium cellulosolvens and Cl. xylanolyticum and the closest relatives to the separately clustered strains were Roseburia cecicola, Lachnospira pectinoschiza and Eubacterium rectale .  相似文献   

15.
Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose–xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L−1 acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (<0.10 g L−1) in all cultures. Xylose fermentation in acetic –acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.  相似文献   

16.
Ultraviolet (UV) microscopy was used to study the capacity of yeast (ATCC 10231 and 10261) and filamentous (ATCC 10259) strains of Candida albicans to accumulate UV-absorbing materials from a medium supplemented with purines, pyrimidines, amino acids, or related compounds as the main nitrogen source. All strains accumulated UV-absorbing compounds when adenine, adenosine, isoguanine, xanthine, or uric acid was supplied as a nitrogen source, but they did not accumulate UV-absorbing compounds when pyrimidines were supplied. The filamentous strain accumulated UV-absorbing material from medium supplemented with hypoxanthine, but the yeast strains did not. In contrast, the yeast strains accumulated more UV-absorbing material than did the filamentous strain when guanine was the nitrogen source. Yeast strain 10231 not only accumulated UV-absorbing material from tyrosine-supplemented medium, but it became filamentous in form as well. Yeast strain 10261 and filamentous strain 10259 did not accumulate detectable amounts of UV-absorbing material, nor was their morphology noticeably affected by the supplement. The two yeast strains accumulated more lipid than the filamentous strain when they were incubated in a nitrogen-deficient medium.  相似文献   

17.
We have isolated from the ovine rumen eight bacterial strains belonging to the speciesButyrivibrio fibrisolvens. DNA hybridization studies showed that the eight strains could be divided into four homology groups, of which none was closely related to the type strain ATCC 19171. Measurement of cross-hybridization between selected pairs of bacterial strains showed that DNA types which produced low, but significant, cross-hybridization on dot-blots were able to form heteroduplexes with between 8.4% and 32.9% of the efficiency of homoduplex formation. Thermal denaturation of the same heteroduplexes resulted in Tm values 6.4–7.5°C lower than those of the homologous duplexes formed under the same conditions. In some cases, hybridization between strains was below the level of reliable measurement. Similar experiments with ten recently isolated strains ofBacteroides ruminicola sub-sp.brevis revealed a similar degree of genetic divergence between isolates.  相似文献   

18.
An industrial ethanol-producing Saccharomyces cerevisiae strain with genes of fungal oxido-reductive pathway needed for xylose fermentation integrated into its genome (YRH1415) was used to obtain haploids and diploid isogenic strains. The isogenic strains were more effective in metabolizing xylose than YRH1415 strain and able to co-ferment glucose and xylose in the presence of high concentrations of inhibitors resulting from the hydrolysis of lignocellulosic biomass (switchgrass). The rate of xylose consumption did not appear to be affected by the ploidy of strains or the presence of two copies of the xylose fermentation genes but by heterozygosity of alleles for xylose metabolism in YRH1415. Furthermore, inhibitor tolerance was influenced by the heterozygous genome of the industrial strain, which also showed a marked influenced on tolerance to increasing concentrations of toxic compounds, such as furfural. In this work, selection of haploid derivatives was found to be a useful strategy to develop efficient xylose-fermenting industrial yeast strains.  相似文献   

19.
Alkaliphilic Bacillus species that grow at pH 10.5 must cope with a low protonmotive force (-50 mV) due to a reversed transmembrane pH gradient at least 2 pH units more acid inside. Here we demonstrate that strictly alkaliphilic B. firmus RAB and two strains of B. alcalophilus (ATCC 27467 and DSM 485) grow exponentially in batch cultures with a doubling time of less than 1 h in 100 mM buffered medium, while the actual medium pH remains above 10.2. The ATCC strain continued to grow rapidly for at least 7 h, but the growth rate of the DSM strain declined dramatically after 3 h. However, both the B. alcalophilus strains, B. firmus RAB and facultatively alkaliphilic B. firmus OF4 were readily maintained for at least 24 h between pH 10.4 and 10.6 in a chemostat where nutrients were constantly replenished. A critical nutrient may be limiting in batch cultures of the DSM strain of B. alcalophilus. The facultative alkaliphile grew equally well in batch cultures at an initial pH of 7.5 or 10.5. Its molar growth yield (23 mg dry wt mmol-1) on malate (Ymal) was the same at the two pH values and was comparable to Ymal for B. subtilis grown at neutral pH. B. firmus RAB and B. alcalophilus ATCC 27467 grown at pH 10.5 also showed Ymal values at least as high as the neutralphile, indicating efficient use of the energy source even at low protonmotive force. Moreover, the phosphorylation potential of B. firmus OF4 grown at pH 7.5 (45.2 kJ mol-1) or pH 10.5 (46 kJ mol-1) was in a conventional range for bacteria.  相似文献   

20.
Two strains of gliding, orange-pigmented bacteria, isolated from fresh bell pepper and watermelon, respectively, showing soft-rot lesions, were identified as Cytophaga johnsonae. They differed from seven type strains of C. johnsonae deposited at the American Type Culture Collection (ATCC) in some properties, such as the ability to utilize glucose, xylose, trehalose, rhamnose, and sucrose. Spherical bodies resembling microcysts of Sporocytophaga sp. in addition to short rods and long filaments were observed in two strains (ATCC 29583 and 29588) throughout the growth cycle and also in aged cultures of other strains. All strains examined were shown to degrade five natural or synthetic polymers (pectin, chitin, starch, protein, and carboxymethyl cellulose). Only six strains (including ATCC 17061, 29587, 29589, and 19366) were able to infect and macerate artificially wounded potato tubers and fruits of pepper, squash, and tomato. The pathogenic strains secreted more pectate lyase in broth medium than the nonpathogenic strains. C. johnsonae, generally known as a soil saprophyte, might occasionally act as an opportunistic pathogen, causing decay of fresh produce in storage or in transit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号