首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Hartung  F. Steigerwald 《Planta》1977,134(3):295-299
Abscisic acid (ABA) in lanolin, applied to the internode of decapitated runner bean plants enhances the outgrowth of lateral buds. The optimum concentration of the paste is 10-5 M. The effect of ABA is counteracted by indoleacetic acid (IAA) but not by gibberellic acid (GA3). There is no effect when ABA is applied to the apical bud or lateral buds of intact plants. However, 13.2 ng given to the lateral buds of decapitated plants stimulate their growth, whereas higher concentrations are inhibitory. Consequently, ABA enhances growth of lateral buds directly, but only when apical dominance is already weakened. The growth of the decapitated 2nd internode was not affected by ABA. Radioactivity from [2-14C] ABA, applied to nonelongating 2nd internode stumps of decapitated runner bean plants moves to the lateral buds, whereas [1-14C]IAA-and [3H]GA1-translocation is much weaker. ABA transport is inhibited if IAA or [3H]GA1 is applied simultaneously. In elongating internodes [14C]ABA is almost completely immobile. [14C]IAA-and [3H]GA1-translocation is not affected by ABA. The amount of radioactivity from labelled ABA, translocated to the lateral buds, is highest during the early stages of bud outgrowth.Abbreviations ABA 2,4-cis, trans-(+)-abscisic acid - GA gibberellic acid - IAA indoleacetic acid - p.l. plain lanolin  相似文献   

2.
Shoot branching is one of the major determinants of plant architecture. Polar auxin transport in stems is necessary for the control of bud outgrowth by a dominant apex. Here, we show that following decapitation in pea (Pisum sativum L.), the axillary buds establish directional auxin export by subcellular polarization of PIN auxin transporters. Apical auxin application on the decapitated stem prevents this PIN polarization and canalization of laterally applied auxin. These results support a model in which the apical and lateral auxin sources compete for primary channels of auxin transport in the stem to control the outgrowth of axillary buds.  相似文献   

3.
Judith G. Croxdale 《Planta》1977,133(2):111-115
The transport and accumulation of 32P and [14C] sucrose in decapitated and intact shoot segments of the fern Davallia were studied. The apical buds of intact shoots and the expanding buds of shoots decapitated 4 weeks before application are major sinks for these nutrients. Decapitation results in a shift of 14C accumulation from the apex to the lateral buds within 36 h. This shift can be reversed in shoots decapitated for 12 h by replacing the apex. Increased 14C accumulation into the stump region occurs when decapitated shoot segments are treated with indole-3-acetic acid, and decreased label accumulation into the apical region results when intact shoots are treated with 2,3,5-triiodobenzoic acid.  相似文献   

4.
The lateral buds of intact Brussels sprout plants containedless auxin and gibberellin than the main apex. When the apexwas removed the auxin content of the top lateral buds increasedwithin 2 days, but gibberellin activity did not increaseuntilshoot extension was apparent. Auxin application to the cut surfaceof decapitated plants caused lateral bud inhibition, but didnot completely prevent bud growth. Both auxin and gibberellinactivity in the plant apex decreased with increasing age, butonly gibberellin activity decreased in the lateral buds. Theauxin content of the lateral buds on intact plants increasedwith time. It is suggested that in Brussels sprouts, lateral bud inhibitionis due to sub-optimal auxin activity, and that decapitationinduces an auxin increase in these buds which then grow out.Lateral shoots are produced following decapitation of youngplants because the gibberellin content of the lateral buds isrelatively high. Only bud swelling occurs in decapitated olderplants because the gibberellin content of the buds is too lowto stimulate shoot extension. It is concluded that these results support the theory that hormone-inducednutrient diversion may control lateral bud development.  相似文献   

5.
The translocation of14C-ABA from roots into other parts of the plant was followed in intact and decapitated pea seedlings. In intact plants ABA from roots was translocated above all into the apical part of epicotyl. In decapitated plants the regulative ability of intact apex can be partly simulated by exogenous IAA. The growth of lateral buds occurring after decapitation was associated with an intensive flow of14C-ABA from roots into released lateral buds as late as 72 h after decapitation,i.e. in the stage of intensive elongation growth of buds.  相似文献   

6.
A lateral bud growth inhibitor was isolated from etiolated pea seedlings and identified as indole-3-aldehyde. The indole-3-aldehyde content was significantly higher in the diffusates from explants with apical bud and indole-3-acetic acid treated decapitated explants, in which apical dominance is maintained, than in those from decapitated ones releasing apical dominance. When the indole-3-aldehyde was applied to the cut surface of etiolated decapitated plants or directly to the lateral buds, it inhibited outgrowth of the latter. These results suggest that indole-3-aldehyde plays an important role as a lateral bud growth inhibitor in apical dominance of pea seedlings.  相似文献   

7.
Although cytokinins (CKs) are widely thought to have a role in promoting shoot branching, there is little data supporting a causative or even a correlative relationship between endogenous CKs and timing of bud outgrowth. We previously showed that lateral bud CK content increased rapidly following shoot decapitation. However, it is not known whether roots are the source of this CK. Here, we have used shoot decapitation to instantaneously induce lateral bud release in chickpea seedlings. This treatment rapidly alters rate and direction of solvent and solute (including CK) trafficking, which may be a passive signalling mechanism central to initiation of lateral bud release. To evaluate changes in xylem transport, intact and decapitated plants were infiltrated with [3H]zeatin riboside ([3H]ZR), a water‐soluble blue dye or [3H]H2O by injection into the hypocotyl. All three tracers were recovered in virtually all parts of the shoot within 1 h of injection. In intact plants, solute accumulation in the lateral bud at node 1 was significantly less than in the adjacent stipule and nodal tissue. In decapitated plants, accumulation of [3H]ZR and of blue dye in the same bud position was increased 3‐ to 10‐fold relative to intact plants, whereas content of [3H]H2O was greatly reduced indicating an increased solvent throughput. The stipule and cut stem, predicted to have high evapotranspiration rates, also showed increased solute content accompanied by enhanced depletion of [3H]H2O. To assess whether metabolism modifies quantities of active CK reaching the buds, we followed the metabolic fate of [3H]ZR injected at physiological concentrations. Within 1 h, 80–95% of [3H]ZR was converted to other active CKs (mainly zeatin riboside‐5′phosphate (ZRMP) and zeatin (Z)), other significant, but unconfirmed metabolites some of which may be active (O‐acetylZR, O‐acetylZRMP and a compound correlated with sites of high CK‐concentrations) and inactive catabolites (adenosine, adenine, 5′AMP and water). Despite rapid metabolic degradation, the total active label, which was indicative of CK concentration in buds, increased rapidly following decapitation. It can be inferred that xylem sap CKs represent one source of active CKs appearing in lateral buds after shoot decapitation.  相似文献   

8.
In intact, decapitated and decapitated indole-3-acetic acid (IAA) treated pea seedlings the translocation of benzyl-8-l4C-adenin (14C-BA) from the roots was studied with regard to the release of lateral buds from apex-induced inhibition. In intact plants (controls) a substantial part of the activity was found in the apical part of the epicotyl. Decapitation resulted in the initiation of growth of lateral buds. As early as 24 h after decapitation and application of14C-BA a significantly higher activity was found in growing lateral buds (cotylars) of decapitated plants than in inhibited ones of intact or IAA-treated decapitated plants. The accumulation of14C-activity in stump tops of decapitated plants treated with IAA was associated with the thickening growth.  相似文献   

9.
Early changes in the concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) were investigated in the larger axillary bud of 2-week-old Phaseolus vulgaris L. cv Tender Green seedlings after removal of the dominant apical bud. Concentrations of these two hormones were measured at 4, 6, 8, 12 and 24 hours following decapitation of the apical bud and its subtending shoot. Quantitations were accomplished using either gas chromatography-mass spectrometry-selected ion monitoring (GS-MS-SIM) with [13C6]-IAA or [2H6]-ABA as quantitative internal standards, or by an indirect enzyme-linked immunosorbent assay, validated by GC-MS-SIM. Within 4 hours after decapitation the IAA concentration in the axillary bud had increased fivefold, remaining relatively constant thereafter. The concentration of ABA in axillary buds of decapitated plants was 30 to 70% lower than for buds of intact plants from 4 to 24 hours following decapitation. Fresh weight of buds on decapitated plants had increased by 8 hours after decapitation and this increase was even more prominent by 24 hours. Anatomical assessment of the larger axillary buds at 0, 8, and 24 hours following decapitation showed that most of the growth was due to cell expansion, especially in the intermodal region. Thus, IAA concentration in the axillary bud increases appreciably within a very few hours of decapitation. Coincidental with the rise in IAA concentration is a modest, but significant reduction in ABA concentration in these axillary buds after decapitation.  相似文献   

10.
John Hillman 《Planta》1970,90(3):222-229
Summary Aqueous solutions of indole acetic acid, kinetin, gibberellic acid and abscisic acid were applied singly and in combination to the decapitated stem stump of Phaseolus seedlings. Application of indole acetic acid will not completely replace the intact stem apex with regard to the inhibition of lateral bud extension. The greatest inhibition of bud growth is obtained when indole acetic acid is applied in combination with both kinetin and abscisic acid. Treatment with gibberellic acid causes massive bud growth even in the presence of indole acetic acid, kinetin and abscisic acid. Although both abscisic acid and kinetin have only a slight promoting effect on bud outgrowth when applied singly, these hormones will modify the effects of indole acetic acid and gibberellic acid.  相似文献   

11.
When flax seedlings are decapitated above cotyledons and three days later one of the two cotyledons is removed then the remaining cotyledon stimulates in four to five days growth of its axillary bud. It has been found that content of endogenous cytokinins was higher in the stimulated bud as compared with the other one already 12 h after the cotyledon removal. Flax seedlings decapitated under cotyledons regenerate adventitious buds on thy hypocotyl stump during 5–6 days. The endogenous fytohormonal preparation of this regeneration was investigated in the 20 mm apical part of the hypocotyl stump. Decrease in auxin and increase in gibberellins was already found during the first day after decapitation while the level of cytokinins increased as late as three days after the apex removal.  相似文献   

12.
Xylem or tracheary changes at the base of the cotyledonary buds of flax seedlings (Linum usitatissimum L.), released from inhibition by decapitation of the main apex were studied. The differentiation of xylem strands and/or tracheary elements was correlated with the growth in length of the lateral buds, especially 48–72 hr after the removal of the main apex. The xylem strands, connected to the hypocotylary stele or not, and the tracheary elements increased with age within and outside the strands of both non-decapitated and decapitated seedlings. In the latter, the differentiation of these structures, however, occurred much earlier and in greater abundance in the same regions. The early growth in length of lateral buds, 1 or 2 hr after decapitation, was correlated with the early development of tracheary perforations in the xylem strands. The xylary strands with perforated elements are known to be more efficient than those without them. Therefore, it is suggested that the inhibition of lateral-bud growth was due, in fact, to a lack of appropriate tracheary perforations in the bud xylem strands that were connected with the hypocotylary stele of flax seedlings.  相似文献   

13.
The hormonal control of axillary bud growth was investigated in cultured stem segments of Phaseolus vulgaris L. When the stem explants were excised and implanted with their apical end in a solid nutrient medium, outgrowth of the axillary buds-located at the midline of the segment-was induced. However, if indoleacetic acid (IAA) or naphthaleneacetic acid (NAA) was included in the medium, bud growth was inhibited. The exposure of the apical end to IAA also caused bud abscission and prevented the appearance of new lateral buds.In contrast to apically inserted segments, those implanted in the control medium with their basal end showed much less bud growth. In these segments, the auxin added to the medium either had no effect or caused a slight stimulation of bud growth.The IAA transport inhibitor N-1-naphthylphthalamic acid (NPA) relieved bud growth inhibition by IAA. This suggests that the effect of IAA applied at the apical end requires the transport of IAA itself rather than a second factor. With the apical end of the segment inserted into the IAA-containing medium, simultaneous basal application of IAA relieved to some extent the inhibitory effect of the apical IAA treatment. These results, together with data presented in a related article [Lim R and Tamas I (1989) Plant Growth Regul 8: 151–164], show that the polarity of IAA transport is a critical factor in the control of axillary bud growth.Of the IAA conjugates tested for their effect on axillary bud growth, indoleacetyl alanine, indoleacetic acid ethyl ester, indoleacetyl-myo-inositol and indoleacetyl glucopyranose were strongly inhibitory when they were applied to the apical end of the stem explants. There was a modest reduction of growth by indoleacetyl glycine and indoleacetyl phenylalanine. Indoleacetyl aspartic acid and indoleglyoxylic acid had no effect.In addition to IAA and its conjugates, a number of other plant growth substances also affected axillary bud growth when applied to the apical end of stem segments. Myo-inositol caused some increase in the rate of growth, but it slightly enhanced the inhibitory effect of IAA when the two substances were added together. Gibberellic acid (GA3) caused some stimulation of bud growth when the explants were from younger, rather than older plants. The presence of abscisic acid (ABA) in the medium had no effect on axillary bud growth. Both kinetin and zeatin caused some inhibition of axillary buds from younger plants but had the opposite effect on buds from older ones. Kinetin also enhanced the inhibitory effect of IAA when the two were applied together.In conclusion, axillary buds of cultured stem segments showed great sensitivity to auxins and certain other substances. Their growth responded to polarity effects and the interaction among different substances. Therefore, the use of cultured stem segments seems to offer a convenient, sensitive and versatile test system for the study of axillary bud growth regulation.  相似文献   

14.
Although the co-ordination of promotive root-sourced cytokinin (CK) and inhibitory shoot apex-sourced auxin (IAA) is central to all current models on lateral bud dormancy release, control by those hormones alone has appeared inadequate in many studies. Thus it was hypothesized that the IAA : CK model is the central control but that it must be considered within the relevant timeframe leading to lateral bud release and against a backdrop of interactions with other hormone groups. Therefore, IAA and a wide survey of cytokinins (CKs), were examined along with abscisic acid (ABA) and polyamines (PAs) in released buds, tissue surrounding buds and xylem sap at 1 and 4 h after apex removal, when lateral buds of chickpea are known to break dormancy. Three potential lateral bud growth inhibitors, IAA, ABA and cis -zeatin 9-riboside (ZR), declined sharply in the released buds and xylem following decapitation. This is in contrast to potential dormancy breaking CKs like trans -ZR and trans -zeantin 9-riboside 5'phosphate (ZRMP), which represented the strongest correlative changes by increasing 3.5-fold in xylem sap and 22-fold in buds. PAs had not changed significantly in buds or other tissues after 4 h, so they were not directly involved in the breaking of bud dormancy. Results from the xylem and surrounding tissues indicated that bud CK increases resulted from a combination synthesis in the bud and selective loading of CK nucleotides into the xylem from the root.  相似文献   

15.
The effect of abscisic acid (AbA) on the growth of lateral and apical buds was studied in seedlings of Pisum sativum and some other species. The hormone was applied in three different ways: 1) directly to the lateral bud on the second node of decapitated pea seedlings as 5 μI droplets in an ethanolic solution; 2) to the cut surface of decapitated seedlings: 3) to the apical bud of intact plants. AbA directly applied in amounts of 5 to 0.1 μg to the lateral bud of the second node of decapitated seedlings had a strong inhibitory effect on the bud. Application to the cut surface of seedlings decapitated about 5 mm above the second node resulted in slight inhibition of the lateral bud on the second node and in growth promotion of the bud on the first node. When AbA at 10 to 0.1 μg was applied to the apical bud of intact seedlings, the growth of this bud was inhibited but the lateral buds grew out. It is concluded that the release of the lateral buds from apícal dominance is the result of the inhibitory effect of AbA on growth of the apical bud and of low transport of AbA. This conclusion is supported by application of GA3 and IAA, individually and each combined with AbA.  相似文献   

16.
Patterns of protein synthesis in dormant and growing vegetative buds of pea   总被引:2,自引:0,他引:2  
Lateral buds on intact pea plants (Pisum sativum L. cv. Alaska) remain dormant until they are stimulated to develop by decapitating the terminal bud. Using two-dimensional gel electrophoresis, we have examined the protein content of terminal and lateral buds from intact plants and from plants at various times after decapitation. Silver-staining and in-vivo-labeling demonstrated very different sets of proteins. The level of expression of 18 stained and 25 labeled proteins was altered when growth was stimulated; this represents 3.4% and 9.1% of the total proteins detected by each method, respectively. Within 24 h of being stimulated, lateral buds doubled in length and their protein content was qualitatively nearly the same as that of terminal buds. Six hours after decapitation, before the onset of detectable growth, the overall pattern of protein synthesis in lateral buds was more like that of growing lateral buds or of terminal buds than that of dormant lateral buds. Direct application of N6-furfurylaminopurine (kinetin) to buds on intact plants stimulated their growth and resulted in the same pattern of protein synthesis as did decapitation. Inhibition of bud growth by addition of indole-3-acetic acid to the stumps of decapitated plants resulted in the synthesis of dormancy-related proteins. Lateral buds at all stages of development incorporated labeled amino acids at similar rates, indicating that metabolic activity is not a component of dormancy in these buds.Abbreviations IAA indole-3-acetic acid - IEF isoelectric focusing - KIN kinetin (N6-furfurylaminopurine) - SDS sodium dodecylsulfate - TCA trichloroacetic acid - 2D-PAGE two-dimensional polyacrylamide gel electrophoresis  相似文献   

17.
Trehalose 6‐phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2‐oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration‐dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot.  相似文献   

18.
[3H]-auxin (0.13 to 0.18 nmol) was applied to the apical bud of broadbean plants (Vicia faba L. cv. Aguadulce). After 24 h, the exportation from the donor organ was ended. After 48 h, i.e. 10–15 h after the passage of the [3H]-auxin pulse into the root system, the distribution and the nature of labelled molecules located in the basal part of the stem and in the axillary buds were investigated. Chromatographic analyses concerned both intact plants and plants decapitated 12 h, 24 h or 42 h after the [3H]-auxin application. In intact plants, there was no significant amount of [3H]-auxin in the axillary buds, whose radioactivity was very low compared to the stem tissues. The labelled molecules with the Rf of auxin represented 50% or more of the whole radioactivity of the stem tissues. The distribution of [3H]-auxin was not uniform along the stem. In particular, the cotyledonary node zone, bearing the most inhibited buds, which is known to be an important centre of label retention, contained the highest amounts of labelled auxin both in intact and decapitated plants. The decapitation was quickly followed by a decrease of the [3H]-auxin amount in the stem base more than 15 cm away from the wound, particularly in the scale leaf nodes, whose axillary buds were mainly the ones to grow after relief from apical dominance. The induction of this early decrease was clearly distinct in plants decapitated when auxin exportation from the donor organ was ended.  相似文献   

19.
In a conifer tree, such as Nordmann fir, Abies nordmanniana Spach, the leader bud and its immediate surroundings play a decisive role in crown architecture. As subapical branch buds are segregated from the leader meristem, resource allocation between ortho- and plagiotropic growth is determined. The relationship between treetop buds in young trees was studied in the natural state and after surgical removal in early July of either the leader bud (decapitation) or the subapical whorl branch buds (destipitation). The two bud types showed consistent cytokinin profile differences but similar seasonal dynamics in cytokinins and auxin (IAA). After bud excision, ZRP increased dramatically in the subapical stem within 1 h, followed by ZR within 1 week. Supernormal levels of ZR were maintained through autumn and persisted in spring in the destipitated trees, but had returned to normal in the decapitated trees. The treetop buds remaining after bud excision experienced an immediate decrease in most cytokinins, followed, however, by a large surplus later in the season. The following spring this high level persisted in the leader bud of destipitated trees, but not in whorl buds of decapitated trees. Conspicuous growth pattern changes followed from destipitation, but few from decapitation. Growth reactions suggest that resource allocation to main branch buds inhibits leader growth in normal trees, a kind of “lateral control.” Auxin and ABA content in buds and stems was largely unaffected by treatments. Data suggest that subapical leader tissues beneath the apical bud group are a primary source of cytokinin regulation.  相似文献   

20.
Auxin Transport within Intact Dormant and Active White Ash Shoots   总被引:2,自引:0,他引:2       下载免费PDF全文
Transport of indoleacetic acid-114C following application to the buds of intact white ash (Fraxinus americana L.) shoots proceeds at a velocity of about 1.3 centimeters per hour in actively growing seedlings, but only 0.3 centimeter per hour in dormant seedlings. The rapid movement is metabolically controlled, and at 1 C or in a nitrogen environment it is reduced to 0.2 centimeter per hour, suggesting that the slower movement is due to diffusion. The transport profile for growing shoots shows a logarithmic decrease in activity in stems treated for 3 hours. However, over longer treatment intervals, especially after 12 hours, a steady state of recoverable activity occurs in the more basal stem segments. Cold-treated shoots acquire the capacity for rapid transport 7 days after they are placed into favorable growing conditions, at which time dormancy callose disappears from the phloem, respiratory activity of the stem tissue increases, and mitotic reactivation occurs in the bud. Following shoot reactivation, the velocity and amount of exogenously supplied indoleacetic acid transported remained relatively uniform until the onset of the succeeding dormant period. Five per cent, or less, of the applied tracer moves into the shoot, with substantial portions remaining as indoleacetic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号