首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three isotope-edited n.m.r. methods have been applied to selectively 13C-substituted monosaccharides and nucleosides to simplify their spectra and/or measure 1H-1H, 13C-1H, or 13H-13C spin-couplings detected via the labeled site. 1D INADEQUATE spectra allowed the selective detection of the natural-abundance carbons that are spin-coupled to the labeled carbon, and adjustment of the mixing time permitted further discrimination between one-bond and longer-range 13C-13C coupling pathways. Geminal and vicinal 13C-1H coupling constants were determined from the analysis of 1H-1H COSY cross-peaks for those protons coupled to the labeled carbon. Long-range 13C-(HETCOR) and 1H-detected (HMBC) 13C-1H chemical-shift correlation spectra permitted the selective observation of those protons coupled to the labeled site, and JH,H values were measured from data projections. The implications of these methods for structural studies of more complex systems is briefly discussed.  相似文献   

2.
The chemical structure and interactions of the cell wall polysaccharides from the red edible seaweed Palmaria palmata were studied by liquid-like magic-angle-spinning (MAS) and cross-polarization MAS (CPMAS) solid-state 13C NMR spectroscopy. The liquid-like MAS and CPMAS 13C NMR spectra of the rehydrated algal powder revealed the presence of beta-(1-->4)/beta-(1-->3)-linked D-xylan with chemical shifts close to those observed in the solution 13C NMR spectrum of the polysaccharide. Observation of mix-linked xylan in the liquid-like MAS 13C NMR spectrum indicated that part of this cell wall polysaccharide is loosely held in the alga. The CPMAS NMR spectrum of the dry algal powder alcohol insoluble residue (AIR) showed broad peaks most of which corresponded to the mix-linked xylan. Hydration of AIR induced a marked increase in the signal resolution also in the CPMAS NMR spectra together with a shift of the C-3 and C-4 signals of the (1-->3)- and (1-->4)-linked xylose, respectively. Such modifications were present in the spectrum of hydrated (1-->3)-linked xylan from the green seaweed Caulerpa taxifolia and absent in that of (1-->4)-linked xylan from P. palmata. This result emphasizes the important role of (1-->3) linkages on the mix-linked xylan hydration-induced conformational rearrangement. The mix-linked xylan signals were observed in the CPMAS NMR spectrum of hydrated residues obtained after extensive extractions by NaOH or strong chaotropic solutions indicating strong hydrogen bonds or covalent linkages. T(1 rho) relaxations were measured close or above 10 ms for the mix-linked xylan in the dry and hydrated state in AIR and indicated that the overall xylan chains likely remain rigid. Rehydration of the mix-linked xylan lead to a decrease in the motion of protons bounded to the C-1 and C-4 carbons of the (1-->4)-linked xylose supporting the re-organization of the xylan chains under hydration involving junction-zones held by hydrogen bonds between adjacent (1-->4)-linked xylose blocks. The CPMAS NMR spectrum of both dry and rehydrated residues obtained after NaOH and HCl extractions demonstrated the presence of cellulose and (1-->4)-linked xylans. The structures of the different polysaccharides are discussed in relation to their interactions and putative functions on the cell wall mechanical properties in P. palmata.  相似文献   

3.
The cellulose model compound methyl 4-O-methyl-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranoside (6) was synthesised in high overall yield from methyl beta-D-cellobioside. The compound was crystallised from methanol to give colourless prisms, and the crystal structure was determined. The monoclinic space group is P2(1) with Z=2 and unit cell parameters a=6.6060 (13), b=14.074 (3), c=9.3180 (19) A, beta=108.95(3) degrees. The structure was solved by direct methods and refined to R=0.0286 for 2528 reflections. Both glucopyranoses occur in the 4C(1) chair conformation with endocyclic bond angles in the range of standard values. The relative orientation of both units described by the interglycosidic torsional angles [phi (O-5' [bond] C-1' [bond] O-4 [bond] C-4) -89.1 degrees, Phi (C-1' [bond] O-4 [bond] C-4 [bond] C-5) -152.0 degrees] is responsible for the very flat shape of the molecule and is similar to those found in other cellodextrins. Different rotamers at the exocyclic hydroxymethyl group for both units are present. The hydroxymethyl group of the terminal glucose moiety displays a gauche-trans orientation, whereas the side chain of the reducing unit occurs in a gauche-gauche conformation. The solid state (13)C NMR spectrum of compound 6 exhibits all 14 carbon resonances. By using different cross polarisation times, the resonances of the two methyl groups and C-6 carbons can easily be distinguished. Distinct differences of the C-1 and C-4 chemical shifts in the solid and liquid states are found.  相似文献   

4.
Lee S  Jung S 《Carbohydrate research》2002,337(19):1785-1789
Cyclosophoraoses (cyclic-(1-->2)-beta-D-glucans) produced by Rhizobium meliloti were used as a novel chiral NMR solvating agent. 13C NMR spectroscopic analysis as an enantiodiscriminating tool was carried out where NMR signal splittings were observed on the interactions of cyclosophoraoses with the enantiomers of N-acetylphenylalanine, catechin and propranolol. The 13C chemical shifts of cyclosophoraoses induced by the enantiomeric interactions predominantly occurred at the C-1 and C-2 carbons associated with the -glycosidic linkage.  相似文献   

5.
High-resolution solid-state 13C NMR spectra of the light-harvesting antenna complex (LH1) from Rhodospirillum rubrum were observed for the first time by cross-polarization (CP), magic angle spinning (MAS) methods with a total elimination of spinning side band technique (TOSS). Chemical shift analysis of the CP/MAS/TOSS 13C NMR spectra confirmed that the LH1 consists mainly of -helices in the solid state. Time constants of cross polarization (TCH) and relaxation time T1 in a rotating frame (T1H) were determined from the experiments at various contact times. Smaller values of TCH were obtained for the carbons attached directly with protons in a rigid state. Relaxation times T1H revealed the dynamic structure of the complex and showed that bacteriochlorophyll a in the LH1 has high internal mobility even in the solid state. The proton spin-lattice relaxation time in a laboratory frame (T1H) determined by the 13C NMR signal amplitude changes suggested that protons in the LH1 proteins have such strong interaction among them that the spins of all protons in the protein can diffuse through spin-lattice-relaxation.  相似文献   

6.
Protection of 3- and 17 beta-hydroxyl groups of estrone and estradiol as tetrahydropyranyl ether derivatives led to mixtures of 2'(R)- and 2'(S)-diastereoisomers which were separated by crystallization (3-tetrahydropyranyl ethers), or by thin-layer chromatography (17-tetrahydropyranyl ethers), and characterized by 1H and 13C nuclear magnetic resonance (NMR). Assignments for NMR signals of estradiol 3,17 beta-ditetrahydropyranyl ether were facilitated by comparison with those of its 15 zeta, 16 zeta-dideuterio analog and by 2D 1H-13C heteroshift correlation experiments. Diastereoisomers of 3-tetrahydropyranyl ether derivatives could be identified through the 13C NMR doublet signals of the anomeric C-2' and the aromatic C-4 carbon atoms in CDCl3. Diastereoisomers of 17-tetrahydropyranyl ether derivatives were recognized from characteristic modifications of 1H NMR signals of H-2', H-6', H-1, H-17, and 18-CH3 protons as well as from the 13C NMR doublet signals corresponding to C-2', C-4', C-6', C-12, C-13, C-16, and C-17 carbon atoms. Low-temperature experiments showed a splitting of the C-2', C-6', and C-17 13C NMR signals of each of the two 17-tetrahydropyranyl ether isomers. The downfield signal (equatorial conformer) of the three resulting doublets was more intense for the 17-tetrahydropyranyl ether 2'(S)-isomer, whereas the upfield signal (axial conformer) was more intense for the 2'(R)-isomer.  相似文献   

7.
The polysaccharide isolated from the gum exudate of palm Scheelea phalerata (SPN) was water-insoluble and composed of Fuc, Ara, Xyl, and uronic acid moieties in a 5:34:54:7 molar ratio: 12% of phenolics were also present. A soluble polysaccharide (SPNa) was obtained after alkaline treatment, which contained Fuc, Ara, Xyl and uronic acid in a 7:44:42:7 molar ratio, with only 2% phenolics. SPNa had an M(W) approximately 1.04 x 10(5) g mol(-1) and was almost monodisperse (M(W)/M(N) : 1.25 +/-0.22). It had a branched structure with side chains of 2-O-substituted Xylp (approximately 8%) and 3-O-substituted Araf (12%) units, and a large proportion of nonreducing end-units of Araf (15%), Fucp (10%), Xylp (4%), and Arap (6%). The (1 --> 4)-linked beta-Xylp main-chain units were 3-O- (9%), 2-O- (13%), and 2,3-di-O- (13%) substituted. Its (13)C NMR spectrum contained at least 9 C-1 signals, those at delta 108.6 and 107.7 arising from alpha-Araf units. Others were present at delta 175.4 from C-6 of alpha-GlcpA and delta 15.6 from C-6 of Fucp units. The main chain of SPNa was confirmed by analysis of a Smith-degraded polysaccharide (SPDS): methylation analysis provided a 2,3-Me(2)-Xyl (65%) derivative and its (13)C NMR spectrum showed five main signals typical of a (1 --> 4)-linked beta-Xylp units. Methylation analysis of a carboxy-reduced polysaccharide (SPN-CR) revealed a 2,3,4,6-Me(4)-Glc derivative (4%) arising from nonreducing end-units of GlcpA. Alpha-GlcpA-(1 --> 2)-alphabeta-Xy1p and alpha-GlcpA-(1 --> 2)-beta-Xylp-(1 --> 4)-alphabeta-Xylp were obtained via partial acid hydrolysis of SPN, showing the structure of side-chain substituents on O-2 of the main-chain units.  相似文献   

8.
Kono H 《Biopolymers》2004,75(3):255-263
13C homonuclear through-bond correlations of alpha- and beta-chitin were determined by using two-dimensional (2D) INADEQUATE spectra of these allomorphs purified from crab shell and squid pen, respectively. The 2D (13)C-(13)C correlation spectra where two directly bonded carbons share a common double-quantum frequency (DQ) enabled us to precisely assign all (13)C resonances of the chitin allomorphs for the first time. Following the complete (13)C assignment, (1)H chemical shifts of protons attached to each carbon nuclei were assigned by 2D frequency-switched Lee-Goldberg (FSLG) (1)H-(13)C heteronuclear correlation (HETCOR) spectra of the chitin allomorphs, recorded with a short mixing time (60 micros) to provide isotropic (1)H-(13)C chemical shift correlations between bonded pairs proton and carbon nuclei. From the (13)C and (1)H chemical shifts of chitin allomorphs, all 2-deoxy-2-acetamide-D-glucose (N-acetyl-D-glucosamine) monomer units in each allomorph were revealed to be an identical (13)C-(13)C backbone conformation and magnetically equivalent. In addition, it was strongly suggested that there are two different hydrogen-bonding patterns at the hydroxyl groups of alpha-chitin by comparing (1)H chemical shifts at the C6 site of alpha-chitin with those at the same site of beta-chitin.  相似文献   

9.
The conformations of the major coat protein of a filamentous bacteriophage can be described by nuclear magnetic resonance spectroscopy of the protein and the virus. The NMR experiments involve detection of the 13C and 1H nuclei of the coat protein. Both the 13C and 1H nuclear magnetic resonance (NMR) spectra show that regions of the polypeptide chain have substantially more motion than a typical globular protein. The fd coat protein was purified by gel chromatography of the SDS solubilized virus. Natural abundance 13C NMR spectra at 38 MHz resolve all of the nonprotonated aromatic carbons from the three phenylalanines, two tyrosines, and one tryptophan of the coat protein. The α carbons of the coat protein show at least two different classes of relaxation behavior, indicative of substantial variation in the motion of the backbone carbons in contrast to the rigidity of the α carbons of globular proteins. The 1H spectrum at 360 MHz shows all of the aromatic carbons and many of the amide protons. Titration of a 1H spectra gives the pKas for the tyrosines.  相似文献   

10.
Cultures of Methanobacterium thermoautotrophicum were supplemented with 13C-labeled acetate or pyruvate, and the labeling pattern of the corrinoid, factor III, was established by 13C NMR spectroscopy. Complete 13C signal assignments were obtained by two-dimensional NMR experiments. The labeling pattern of factor III was analyzed by comparison with those of amino acids and nucleosides. The corrin ring system is derived from eight molecules of glutamate. The aminopropanol moiety is derived in a hitherto unknown pathway from pyruvate by reductive amination. The heterocyclic ring of hydroxybenzimidazole shares the labeling pattern of the imidazole ring of purines. The remaining four carbon atoms of the carbocyclic ring show the labeling signature of a carbohydrate with two of the carbons introduced from acetate and two from C-1 of pyruvate. However, erythrose can be ruled out as the specific precursor on the basis of a detailed investigation of aromatic amino acids indicating that erythrose 4-phosphate is obtained by reductive carboxylation of a triose precursor and not by the pentose phosphate cycle.  相似文献   

11.
Twenty new 5-(hydroxyalkyl)-2-cyclopentenone derivatives (hygrophorones) could be isolated from Hygrophorus latitabundus, H. olivaceoalbus, H. persoonii, and H. pustulatus. Their fungicidal activity was exemplarily tested. The hygrophorones have structural similarities to the antibiotic pentenomycin. Chemically, hygrophorones are 2-cyclopentenones with hydroxy or acetoxy substituents at C-4 and/or C-5. An odd-numbered 1' oxidized alkyl chain (C(11), C(13), C(15), or C(17)) is attached at C-5. In addition, from H. persoonii the new gamma-butyrolactone derivative [5-(E)-2-hydroxytetradexylidene-5H-furan-2-one] could be isolated. Some hygrophorones are responsible for the color reaction of the stipes of these fungi upon treatment with potassium hydroxide solution. Structural elucidations are based on 1D ((1)H, (13)C) and 2D (COSY, NOESY, HSQC, HMBC) NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.  相似文献   

12.
The spatial structure of duplex (Phn-NH(CH2)2NH)pd(CCAAACA).pd(TGTTTGGC) having a N-(2-oxyethyl)-phenazinium residue covalently linked with the 5'-terminal phosphate of the heptanucleotide was studied by means of one- and two-dimensional 1H-NMR spectroscopy. The resonances of phenazinium protons, ethylenediamine linker protons, as well as, oligonucleotide H5/H6/H8/CH3 base protons and H1',H2'a, H2'b, H3', H4' deoxyribose protons have been assigned by means of 1H-COSY, 1H-NOESY and 1H-13C-COSY. The presence of the phenazine residue in duplex causes an additional imino proton signal of the terminal (G-7).(C-1) base pair, suggesting a higher stability of the duplex (Phn-NH(CH2)2NH)pd(CCAAACA).pd(TGTTTGGC) as compared to the unmodified duplex pd(CCAAACA).pd(TGTTTGGC). Analysis of NOE interactions between protons of the dye and the oligonucleotides show the phenazinium polycyclic system to intercalate between G-7 and C-8 residues of the octanucleotide.  相似文献   

13.
Tang H  Hills BP 《Biomacromolecules》2003,4(5):1269-1276
To investigate the domain structure and dynamics of polysaccharides in the native starch granules, a variety of high resolution, solid-state (13)C NMR techniques have been applied to all three (A-, B-, and C-) types of starch with different water content. Both single-pulse-excitation magic-angle-spinning (SPEMAS) and cross-polarization-magic-angle-spinning (CPMAS) methods have been employed together with the PRISE (proton relaxation induced spectral-editing) techniques to distinguish polysaccharide fractions in different domains and having distinct dynamics. It has been found that, for all three types of dry starch granules, there are two sets of NMR signals corresponding to two distinct ordered polysaccharides. Hydration leads to substantial mobilization of the polysaccharides in the amorphous regions, but no fundamental changes in the rigidity of the polysaccharides in the crystalline (double) helices. Full hydration also leads to limited mobility changes to the polysaccharides in the amorphous lamellae (branching zone) within the amylopectin clusters and in the gaps between the arrays of the amylopectin clusters. Under magic-angle spinning, proton relaxation-time measurements showed a single component for T(1), two components for T(1rho), and three components for T(2). PRISE experiments permitted the neat separation of the (13)C resonances of polysaccharides in the crystalline lamellae from those in the amorphous lamellae and the amylose in the gaps between amylopectin clusters. It has been found that the long (1)H T(1rho) component ( approximately 30 ms) is associated with polysaccharides in the crystalline lamellae in the form of double helices, whereas the short T(1rho) component (2-4 ms) is associated with amylose in the gaps between amylopectin clusters. The short (1)H T(2) component ( approximately 14 micros) is associated with polysaccharides in the crystalline lamellae; the intermediate component (300-400 micros) is associated with polysaccharides in the amorphous lamellae and amylose in the gaps between amylopectin clusters. The long T(2) component is associated with both mobile starch protons and the residue water protons.  相似文献   

14.
Derivatives of antitumour anthracycline antibiotics containing N-methylurea moiety in the carbohydrate ring were obtained by the interaction of methyl isocyanate with daunorubicin, doxorubicin, carminomycin and daunorubicin derivatives, substituted at C-13 or C-14 positions. N-Nitrosation of these compounds yielded modified anthracycline antibiotics containing the N-methyl-N-nitrosourea substituent at C-3' position. Alkaline degradation of these derivatives produced, through corresponding isocyanates cyclic 3'-N,4'-carbonylderivatives. In these anthracycline derivatives with sugar cycles conjugated with oxazoline-2-ones the predominant conformations of sugar ring has changed from 1C4 to 4C1, 2,5B, or B0,3 (shown by 1H NMR spectroscopy). It was demonstrated, both in vitro and in vivo, that introduction of methylurea or cytotoxic methylnitrosourea moieties does not potentiate antimicrobial, cytotoxic or antitumour properties of these compounds.  相似文献   

15.
The hydroxy protons of the disaccharide moiety in the glycopeptide Val-[beta-Gal(1-->3)-alpha-GalNAc(1-->O)]-Thr-His-Pro-Gly-Tyr (1) have been investigated in aqueous solution using (1)H NMR spectroscopy. The chemical shifts (delta), coupling constants ((3)J(CH,OH)), temperature coefficients (d delta/dT), exchange rates (k(ex)), and NOEs have been measured. The data show that the O(2')H of Gal has a reduced contact with water due to steric interference caused by the 2-acetamido group of GalNAc. No interaction, in terms of hydrogen bonding exists between the disaccharide and the peptide moieties, but the rotation around the sugar-peptide linkage is restricted.  相似文献   

16.
Sequence-specific 1H and 13C NMR assignments have been made for residues that form the five-stranded parallel beta-sheet and the flavin mononucleotide (FMN) binding site of oxidized Anabaena 7120 flavodoxin. Interstrand nuclear Overhauser enhancements (NOEs) indicate that the beta-sheet arrangement is similar to that observed in the crystal structure of the 70% homologous long-chain flavodoxin from Anacystis nidulans [Smith et al. (1983) J. Mol. Biol. 165, 737-755]. A total of 62 NOEs were identified: 8 between protons of bound FMN, 29 between protons of the protein in the flavin binding site, and 25 between protons of bound FMN and protons of the protein. These constraints were used to determine the localized solution structure of the FMN binding site. The electronic environment and conformation of the protein-bound flavin isoalloxazine ring were investigated by determining 13C chemical shifts, one-bond 13C-13C and 15N-1H coupling constants, and three-bond 13C-1H coupling constants. The carbonyl edge of the flavin ring was found to be slightly polarized. The xylene ring was found to be nonplanar. Tyrosine 94, located adjacent to the flavin isoalloxazine ring, was shown to have a hindered aromatic ring flip rate.  相似文献   

17.
The aromatic regions in proton-decoupled natural abundance 13C Fourier transform nuclear magnetic resonance spectra (at 14.2 kG) of small native proteins contain broad methine carbon bands and narrow nonprotonated carbon resonances. Some factors that affect the use of natural abundance 13C Fourier transform NMR spectroscopy for monitoring individual nonprotonated aromatic carbon sites of native proteins in solution are discussed. The effect of protein size is evaluated by comparing the 13C NMR spectra of horse heart ferrocytochrome c, hen egg white lysozyme, horse carbon monoxide myoglobin, and human adult carbon monoxide hemoglobin. Numerous single carbon resonances are observed in the aromatic regions of 13C NMR spectra of cytochrome c, lysozyme, and myoglobin. The much larger hemoglobin yields few resolved individual carbon resonances. Theoretical and some experimental values are presented for the natural linewidths (W), spin-lattice relaxation times (T1), and nuclear Overhauser enhancements (NOE) of nonprotonated aromatic carbons and Czeta of arginine residues. In general, the 13C-1H dipolar mechanism dominates the relaxation of these carbons. 13C-14N dipolar relaxation contributes significantly to 1/T1 of C epsilon2 of tryptophan residues and Czeta of arginine residues of proteins in D2O. The NOE of each nonprotonated aromatic carbon is within experimental error of the calculated value of about 1.2. As a result, integrated intensities can be used for making a carbon count. Theoretical results are presented for the effect of internal rotation on W, T1, and the NOE. A comparison with the experimental T1 and NOE values indicates that if there is internal rotation of aromatic amino acid side chains, it is not fast relative to the over-all rotational motion of the protein.  相似文献   

18.
The dipeptide His-Pro isomerizes from all-s-trans to partly s-cis when titrated in D2O from acidic to neutral pD as observed by 13C and 1H nuclear magnetic resonance of the proline side chain. This isomerization is reported by the His C-2 and C-4 protons and carbons which show distinct, well-resolved resonances for each isomer. The influence of the His-Pro peptide bond rotational state on the histidine protons far removed from the bond has not been previously observed in model compounds or peptides. The peptides thyroliberin (TRH), [3-MeHis2]-TRH, and [3-MeHis6]-, [Sar1,Al8]-, and Nalpha-acetylangiotensin II were found to similarly isomerize from all-s-trans to partly s-cis as reported by their His C-2 and C-4 proton resonances. The His C-2 and C-4 protons in the peptides [1,3-diMeHis2]-TRH and [1-MeHis6]-, and [homoHis6]-angiotensin do not report this isomerization. Angiotensin II has previously been found to exhibit the same isomerization. The reporting of the s-trans to s-cis isomerization by the His C-2 proton appears to be correlated with the known potencies of the five angiotensin peptides in rat uterine strips and of the three TRH peptides by radioimmunoassay of released thyrotropin.  相似文献   

19.
Methyl esters of gamma-linolenic acid, alpha-linolenic acid and stearidonic acid were epoxidised using m-chloroperbenzoic acid to achieve nine cis-monoepoxy-C18 fatty acid methyl esters (FAMEs), including novel methyl cis-monoepoxy derivatives of stearidonic acid and a cis-6,7-epoxy derivative of gamma-linolenic acid. These nine monoepoxy FAMEs were purified by normal-phase HPLC, identified by LC-MS, 1H and 13C NMR, and characterized by mass spectrometry and NMR spectroscopy. This study is focused on structural characterization of these C18 monoepoxy FAMEs using techniques in NMR spectroscopy including 1H, 13C, 1H-1H correlated spectroscopy (COSY) and 1H-13C heteronuclear correlation (HETCOR). The proton and carbon NMR chemical shifts of the epoxide, the double bonds, and the interrupted methylenes are assigned. Also discussed is an interpretation of the 1H and 13C NMR spectra of these monoepoxides including the changes in the 13C resonance of the olefinic carbons on the neighboring double bonds resulting from epoxide formation.  相似文献   

20.
Three novel sterols with a rare D-ring unsaturation were isolated from the marine sponge Topsentia aurantiaca and identified as 5 alpha-cholest-14-ene-3 beta,16 alpha-diol (2), 24R-ethyl-5 alpha-cholest-14-ene-3 beta,16 alpha-diol (3), and 24S-ethyl-5 alpha-cholest-14-ene-3 beta,16 alpha-diol (4). The sponge also elaborates a further D-ring unsaturated sterol, 5 alpha-cholest-15-en-3 beta-ol (1), which has been previously described only as a synthetic product. All the 1H and 13C nuclear magnetic resonances of compounds 1 and 2 were assigned to the relevant protons and carbons by bidimensional COSY, HETCOR, and HMQC nuclear magnetic resonance experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号