首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitroxides block DNA scission and protect cells from oxidative damage.   总被引:1,自引:0,他引:1  
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.  相似文献   

2.
There is renewed interest in the use of maggots (Lucilia sericata) to aid in healing of chronic wounds. In such wounds neutrophils precipitate tissue damage rather than contribute to healing. As the molecules responsible for the beneficial actions of maggots are contained in their excretions/secretions (ES), we assessed the effects of ES on functional activities of human neutrophils. ES dose-dependently inhibited elastase release and H(2)O(2) production by fMLP-activated neutrophils; maximal inhibition was seen with 5-50 microg of ES/ml. In contrast, ES did not affect phagocytosis and intracellular killing of Candida albicans by neutrophils. Furthermore, 0.5 microg of ES/ml already inhibited neutrophil migration towards fMLP. ES dose-dependently reduced the fMLP-stimulated expression of CD11b/CD18 by neutrophils, suggesting that ES modulate neutrophil adhesion to endothelial cells. ES did not affect the fMLP-induced rise in [Ca(2+)](i) in neutrophils, indicating that ES act down-stream of phospholipase C-mediated activation of protein kinase C. In agreement, ES inhibited PMA-activated neutrophil functional activities. ES induced a rise in intracellular cAMP concentration in neutrophils and pharmacological activators of cAMP-dependent mechanisms mimicked their inhibitory effects on neutrophils. The beneficial effects of maggots on chronic wounds may be explained in part by inhibition of multiple pro-inflammatory responses of activated neutrophils by ES.  相似文献   

3.
While the exact mechanism of H2O2-induced cytotoxicity is unknown, there is considerable evidence implicating DNA as a primary target. A recent study showed that a cell-impermeable nitroxide protected mammalian cells from H2O2-induced cell killing and suggested that the protection was mediated through cell membrane-bound or extracellular factors. To further define the protective properties of nitroxides, Chinese hamster V79 cells were exposed to H2O2 with or without cell-permeable and impermeable nitroxides and selected metal chelators. EPR spectroscopy and paramagnetic line broadening agents were used to distinguish between intra- and extracellular nitroxide distribution. To study the effectiveness of nitroxide protection, in the absence of a cell membrane, H2O2-mediated damage to supercoiled plasmid DNA was evaluated. Both deferrioxamine and Tempol cross the cell membrane, and inhibited H2O2-mediated cell killing, whereas the cell-impermeable DTPA and nitroxide, CAT-1, failed to protect. Similar protective effects of the chelators and nitroxides were observed when L-histidine, which enhances intracellular injury, was added to H2O2. In contrast, when damage to plasmid DNA was induced (in the absence of a cell membrane), both nitroxides were protective. Collectively, these results do not support a role for membrane-bound or extracellular factors in mediating H2O2 cytotoxicity in mammalian cells.  相似文献   

4.
Various low-molecular-weight copper chelates have been synthesized to mimic superoxide dismutase (SOD) by catalyzing O2-. dismutation. However, in the presence of cellular proteins, such chelates dissociate and thereby lose their SOD-mimetic activity. In contrast, desferrioxamine-Mn(III) 1:1 chelate (DF-Mn), an SOD-mimic that affords protection from oxidative damage, reportedly is stable in the presence of serum albumin. DF-Mn, unlike SOD, is reported to permeate the membrane of at least one cell type and can protect cells by detoxifying intracellular O2-.. Recently DF-Mn was shown to protect hypoxic cells from H2O2-induced damage. Such results suggest that DF-Mn can protect cells from O2-.-independent damage by alternative mechanisms. This study examines such possibilities. To avoid O2-. participation in the damaging process, killing of monolayered V79 Chinese hamster cells was induced in a hypoxic environment by t-butyl hydroperoxide (t-BHP). Damage induced by t-BHP was inhibitable by DF-Mn. DF-Mn was also found to rapidly oxidize iron(II)-bound DNA. Additionally, once DF-Mn oxidizes Fe(II) or Cu(I), the DF moiety of DF-Mn dissociates and rapidly binds to Fe(III) or Cu(II). Without excluding the possibility that DF-Mn protects cells by facilitating the removal of O2-., the present results show that this SOD-mimic can confer protection from cytotoxic processes independent of O2-. or of O2-.-derived active species.  相似文献   

5.
The ability of transferrin to potentiate oxygen free radical-mediated endothelial cell injury was assessed. 51Cr-labeled endothelial cells derived from rat pulmonary arteries (RPAECs) were incubated with hydrogen peroxide (H2O2) in the presence and absence of holosaturated human transferrin, and the effect of transferrin on H2O2-mediated endothelial cell toxicity was determined. Addition of holosaturated transferrin potentiated H2O2-mediated RPAEC cytotoxicity at concentrations of H2O2 greater than 10 microM, suggesting that transferrin may provide a source of iron for free radical-mediated endothelial cell injury. Free radical-mediated injury is dependent on non-protein-bound iron. The ability of RPAECs to facilitate the release of iron from transferrin was assessed. We determined that RPAECs facilitate the release of transferrin-derived iron by reduction of transferrin-bound ferric iron (Fe3+) to ferrous iron (Fe2+). The reduction and release of transferrin-derived Fe2+ were inhibited by apotransferrin and chloroquine, indicating a dependence on receptor-specific binding of transferrin to the RPAEC cell surface, with subsequent endocytosis, acidification, and reduction of transferrin-bound Fe3+ to Fe2+. The release of transferrin-derived Fe2+ was potentiated by diethyldithiocarbamate, an inhibitor of intracellular superoxide dismutase (SOD). In contrast, exogenous SOD did not alter iron release, suggesting that intracellular superoxide anion (O2-) may play an important role in mediating the reduction and release of transferrin-derived iron. Results of this study suggest that transferrin may provide a source of iron for oxygen free radical-mediated endothelial cell injury and identify a novel mechanism by which endothelial cells may mediate the reduction and release of transferrin-derived iron.  相似文献   

6.
We investigated the effects of the antibiotic ceftazidime (CAZ) on the cytolytic action of the neutrophil myeloperoxidase-hydrogen peroxide-chloride anion system (MPO/H(2)O(2)/Cl(-)). In this system, myeloperoxidase catalyses the conversion of H(2)O(2) and CI(-) to the cytotoxic agent HOCl. Stimulated neutrophils can release MPO into the extracellular environment and then may cause tissue injury through direct endothelial cells lysis. We showed that human umbilical vein endothelial cells (HUVEC) were capable of taking up active MPO. In presence of H(2)O(2) (10(-4) M), this uptake was accompanied by cell lysis. The cytolysis was estimated by the release of (51)Cr from HUVEC and expressed as an index of cytotoxicity (IC). Dose dependent protection was obtained for CAZ concentrations ranging from 10(-5) to 10(-3) M;this can be attributed to inactivation of HOCl by the drug. This protection is comparable to that obtained with methionine and histidine, both of which are known to neutralize HOCl. This protection by CAZ could also be attributed to inactivation of H(2)O(2), but when cytolysis was achieved with H(2)O(2) or O(2) (-) generating enzymatic systems, no protection by CAZ was observed. Moreover, the peroxidation activity of MPO (action on H(2)O(2)) was not affected by CAZ, while CAZ prevented the chlorination activity of MPO (chlorination of monochlorodimedon). So, we concluded that CAZ acts via HOCl inactivation. These antioxidant properties of CAZ may be clinically useful in pathological situations where excessive activation of neutrophils occurs, such as in sepsis.  相似文献   

7.
Catalase and superoxide dismutase in Escherichia coli   总被引:9,自引:0,他引:9  
We assessed the roles of intrabacterial catalase and superoxide dismutase in the resistance of Escherichia coli to killing by neutrophils. E. coli in which the synthesis of superoxide dismutase and catalase were induced by paraquat 10-fold and 5-fold, respectively, did not resist killing by neutrophils. When bacteria were allowed to recover from the toxicity of paraquat for 1 h on ice and for 30 min at 37 degrees C, they still failed to resist killing by neutrophils. Induction of the synthesis of catalase 9-fold by growth in the presence of phenazine methosulfate did not render E. coli resistant to killing by either neutrophils or by H2O2 itself. The lack of protection by intrabacterial catalase from killing by neutrophils could not be attributed to an impermeable bacterial membrane; the evolution of O2 from H2O2 was no less rapid in suspensions of E. coli than in lysates. The failure of intrabacterial catalase or superoxide dismutase to protect bacteria from killing by neutrophils might indicate either that the flux of O-2 and H2O2 in the phagosome is too great for the intrabacterial enzymes to alter or that the site of injury is at the bacterial surface.  相似文献   

8.
The roles of beta 2 integrin molecules in neutrophil accumulation and tissue injury have been examined by the use of antibodies that are reactive with human CD11b and CD18 and cross-react with the homologous epitopes on rat neutrophils. Adherence to rat pulmonary artery endothelial cells by human neutrophils and endothelial cell killing by phorbol ester-activated human neutrophils required CD11b, CD11c, and CD18. Companion adherence studies between rat neutrophils and endothelial cells revealed a requirement for both CD11b and CD18. Neither anti-CD11b nor anti-CD18 depressed in vitro responses (O2- generation and chemotactic migration) of rat neutrophils. The accumulation of neutrophils in glycogen-induced peritoneal exudates was diminished substantially in rats treated with either anti-CD18 or anti-CD11b. In oxidant-mediated acute lung injury induced by rapid intravascular infusion of cobra venom factor, treatment of rats with either anti-CD18 or anti-CD11b significantly attenuated injury as assessed by increases in vascular permeability and hemorrhage. These protective effects correlated morphologically with diminished adhesion of neutrophils to interstitial intrapulmonary capillary endothelial cells. In studies of immune complex (BSA-anti-BSA)-induced alveolitis and dermal vasculitis, anti-CD18 had protective effects at all doses of anti-BSA employed. The protective effects of anti-CD18 correlated with diminished neutrophil accumulation in tissues at lower doses of anti-BSA. Although anti-CD11b was not effective under the same experimental conditions, intratracheal administration of this antibody conveyed protection against immune complex-induced lung injury, suggesting that both CD11b and CD18 are required for the full expression of injury. The current studies also demonstrated that when surface-bound IgG immune complexes were treated with fresh rat serum, the increment in O2- and TNF alpha generated by alveolar macrophages was suppressed by anti-CD18, but not by anti-CD11b, suggesting a heretofore unrecognized role for CD18 in the O2- and TNF-alpha responses of alveolar macrophages. Thus, neutrophil beta 2 integrins play a requisite role for the full expression of complement-dependent and oxygen radical-mediated injury of the lung and dermal vasculature.  相似文献   

9.
NADPH oxidase of phagocytic cells transfers a single electron from intracellular NADPH to extracellular O2, producing superoxide (O.-2), the precursor to several other reactive oxygen species. The finding that a genetic defect of the enzyme causes chronic granulomatous disease (CGD), characterized by recurrent severe bacterial infections, linked O.-2 generation to destruction of potentially pathogenic micro-organisms. In this review, we focus on the consequences of the electrogenic functioning of NADPH oxidase. We show that enzyme activity depends on the possibilities for compensating charge movements. In resting neutrophils K+ conductance dominates, but upon activation the plasma membrane rapidly depolarizes beyond the opening threshold of voltage-gated H+ channels and H+ efflux becomes the major charge compensating factor. K+ release is likely to contribute to the killing of certain bacteria but complete elimination only occurs if O.-2 production can proceed at full capacity. Finally, the reversed membrane potential of activated neutrophils inhibits Ca2+ entry, thereby preventing overloading the cells with Ca2+. Absence of this limiting mechanism in CGD cells may contribute to the pathogenesis of the disease.  相似文献   

10.
We studied the role of glutathione in the endothelial cell defense against H2O2 damage. Treatment of endothelial cells with buthionine sulfoximine, an irreversible inhibitor of gamma-glutamylcysteine synthetase, depleted the cells of GSH, while L-2-oxothiazolidine-4-carboxylate, an effective intracellular cysteine delivery agent, markedly enhanced endothelial cell GSH concentration. Depletion of intracellular GSH sensitized the endothelial cells to injury by H2O2 either preformed or generated by the glucose-glucose oxidase system. In contrast, an increase of intracellular GSH protected the cells from H2O2 damage. There was an inverse, linear relationship between the intracellular GSH concentrations and killing of endothelial cells by H2O2. Our results suggest that enhancement of endothelial cell GSH may be an alternative approach toward the prevention of oxidant-induced endothelial damage such as adult respiratory distress syndrome.  相似文献   

11.
Dimethylthiourea (DMTU) progressively disappeared following reaction with increasing amounts of hydrogen peroxide (H2O2) in vitro. DMTU disappearance following reaction with H2O2 was inhibited by addition of catalase, but not aminotriazole-inactivated catalase (AMT-catalase), superoxide dismutase (SOD), mannitol, benzoate or dimethyl sulfoxide (DMSO) in vitro. By comparison, DMTU disappearance did not occur following addition of histamine, oleic acid, elastase, trypsin or leukotrienes in vitro. Addition of DMTU also decreased H2O2-mediated injury to bovine pulmonary artery endothelial cells (as reflected by LDH release) and DMTU disappeared according to both added amounts of H2O2 and corresponding degrees of injury. DMTU disappearance was also relatively specific for reaction with H2O2 in suspensions of endothelial cells where it was prevented by addition of catalase, but not AMT-catalase or SOD and did not occur following sonication or treatment with elastase, trypsin or leukotrienes. Addition of washed human erythrocytes (RBC) also prevented both H2O2 mediated injury and corresponding DMTU decreases in suspensions of endothelial cells. In addition, phorbol myristate acetate (PMA) and normal neutrophils, but not O2 metabolite deficient neutrophils from patients with chronic granulomatous disease (CGD), caused DMTU disappearance in vitro which was decreased by simultaneous addition of catalase, but not SOD, sodium benzoate or DMSO. Finally, addition of normal neutrophils (but not CGD neutrophils) and PMA caused DMTU disappearance and increased the concentrations of the stable prostacyclin derivative (PGF1 alpha) in supernatants of endothelial cell suspensions. In parallel, DMTU also decreased PMA and neutrophil-mediated PGF1 alpha increases in supernatants from endothelial cell monolayers. Our results indicate that DMTU can decrease H2O2 or neutrophil mediated injury to endothelial cells and that simultaneous measurement of DMTU disappearance can be used to improve assessment of the presence and toxicity of H2O2 as well as the H2O2 inactivating ability of scavengers, such as RBC, in biological systems.  相似文献   

12.
13.
We investigated the effect on cell death of reactive oxygen species induced by water-soluble cationic metalloporphyrins with superoxide dismutase (SOD) activity. The SOD activity of 5,10,15,20-tetrakis(4-N-methylpyridyl)]porphine (MPy(4)P) containing Fe, Mn or Cu was measured using a cytochrome c assay by the xanthine/xanthine oxidase system and stopped-flow kinetic analysis. Cell viability of four cell lines treated with metalloporphyrins, mitomycin c (MMC), or cisplatin was estimated by a trypan blue exclusion assay. FeMPy(4)P with a high SOD activity showed a significant cytotoxicity compared with MMC and cisplatin, while CuMPy(4)P without SOD activity exhibited no cytotoxicity. However, MnMPy(4)P showing an SOD activity as high as that of FeMPy(4)P did not indicate cytotoxicity. These findings suggest that FeMPy(4)P as SOD mimic converts intracellular O2(*-) to H(2)O(2) and that it rapidly reacts with H(2)O(2) to form *OH, causing DNA damage and inducing cell death. On the other hand, MnMPy(4)P did not participate in the Fenton reaction, so that DNA damage in the cells treated with MnMPy(4)P was not observed. In addition, the cytotoxicity by the metalloporphyrin was inversely correlated with the SOD activity of the cells and the selective damage at cellular and DNA levels was confirmed. We believe that for an anticancer drug with antioxidant ability O(2)(*-) is useful as a target molecule to induce selective cell death between cancer and normal cells and that metalloporphyrins showing SOD activity and Fenton-like reaction are a new class of anticancer agents.  相似文献   

14.
Oxygen radicals, inflammation, and tissue injury   总被引:8,自引:0,他引:8  
Inflammatory reactions often result in the activation and recruitment of phagocytic cells (e.g., neutrophils and/or tissue macrophages) whose products result in injury to the tissue. In killing of endothelial cells by activated neutrophils as well as in lung injury produced by either activated neutrophils or activated macrophages there is evidence that H2O2 and iron play a role. HO. may be a key oxygen product related to the process of injury. Endothelial cells in some vascular compartments may be susceptible to neutrophil mediated injury in a manner that is independent of oxygen radicals. On the basis of in vitro observations, a synergy exits between platelets and neutrophils, resulting in enhanced oxygen radical formation by the latter. Finally, the cytokines, interleukin 1 and tumor necrosis factor, released from macrophages have both direct stimulatory effects on oxygen radical formation in neutrophils and can "prime" macrophages for enhanced oxygen radical responses to other agonists. Cytokines may also alter endothelial cells rendering them more susceptible to oxygen radical mediated injury by neutrophils. This suggests a complex network of interactions between phagocytic cells and peptide mediators, the result of which is acute, oxygen radical mediated tissue injury.  相似文献   

15.
Park WH  Han YW  Kim SH  Kim SZ 《Mutation research》2007,619(1-2):81-92
We investigated the involvement of ROS such as H2O2 and O2*-, and GSH in As4.1 cell death induced by pyrogallol. The intracellular H2O2 levels were decreased or increased depending on the concentration and incubation time of pyrogallol. The levels of O2*- were significantly increased. Pyrogallol reduced the intracellular GSH content. And ROS scavengers, Tempol, Tiron, Trimetazidine and NAC could not significantly down-regulate the production of H2O2 and O2*-. However, these ROS scavengers slightly inhibited apoptosis. Interestingly, Tempol showing the recovery of GSH depletion induced by pyrogallol significantly decreased apoptosis without the significant reduction of intracellular O2*- levels. SOD and catalase did not change the level of H2O2 but decreased the level of O2*-. The inhibition of GSH depletion by these was accompanied with the decrease of apoptosis, as evidenced by sub-G1 DNA content, annexin V staining, mitochondria membrane potential (DeltaPsi(m)) and Western data. In addition, ROS scavengers and SOD did not alter a G2 phase accumulation of the cell cycle induced by pyrogallol. However, catalase changed the cell cycle distributions of pyrogallol-treated cells to those of pyrogallol-untreated cells. In summary, we have demonstrated that pyrogallol potently generates ROS, especially O2*-, in As4.1 JG cells, and Tempol, SOD and catalase could rescue to a lesser or greater extent cells from pyrogallol-induced apoptosis through the up-regulation of intracellular GSH content.  相似文献   

16.
Human neutrophils exposed to the soluble stimulus, phorbol myristate acetate, generate a flux of O2.- which can destroy human erythrocyte targets. Under optimal conditions, each neutrophil was capable of lysing almost 10 erythrocyte targets. Hemolysis was inhibited by exogenous copper-zinc or iron superoxide dismutase while neither heat-denatured enzyme nor albumin inhibited cytotoxicity. Although neutrophils can also generate H2O2, neither catalase nor a glutathione-glutathione peroxidase system inhibited hemolysis. Hemolysis was prevented by conversion of the hemoglobin to carbon monoxyhemoglobin, suggesting an intracellular mechanism of cytotoxicity. Conversion of hemoglobin to methemoglobin by nitrite treatment did not impair neutrophil-mediated hemolysis. However, nitrite-treated targets were not protected by superoxide dismutase, while exogenous catalase inhibited cytotoxicity, suggesting a potential role for H2O2 and methemoglobin. H2O2 and methemoglobin are known to interact to form an oxidant complex whose cytotoxic potential was underlined by the marked sensitivity of nitrite-treated cells to commercial H2O2. It is proposed that neutrophil-derived O2.- oxidizes oxyhemoglobin to generate methemoglobin and H2O2 which interact to form a cytotoxic complex capable of hemolyzing the erythrocyte target.  相似文献   

17.
Protective effect of anti-CD11a and anti-ICAM-1 antibodies on the cytotoxicity induced by PMA-stimulated neutrophils was studied using cultured endothelial cells isolated from bovine carotid artery. Anti-CD11a antibody and anti-ICAM-1 antibody inhibited the endothelial cell injury induced by the activated neutrophils in a dose dependent manner. On the other hand, both antibodies themselves had no effect on either the luminol chemiluminescence released out of the activated neutrophils or the adhesion of the neutrophils to the endothelial cell monolayer. These data suggest that these adhesion molecules play some important roles in the vascular endothelial cell injury elicited by activated neutrophils.  相似文献   

18.
Increased cellular generation of partially reduced species of oxygen mediates the toxicity of hyperoxia to cultured endothelial cells and rats exposed to 95-100% oxygen. Liposomal entrapment and intracellular delivery of superoxide dismutase (SOD) to cultured porcine aortic endothelial cells increased the specific activity of cellular SOD up to 15-fold. The liposome-mediated augmentation of SOD activity persisted in cell monolayers and rendered these cells resistant to oxygen-induced injury in a cell SOD activity-dependent manner. Addition of free SOD to culture medium had no effect on cell SOD activity or resistance to oxygen toxicity. SOD and catalase-containing liposomes injected i.v. into rats increased lung-associated enzyme specific activities two- to fourfold. Liposome entrapment of both SOD and catalase significantly increased the circulating half-lives of these enzymes and was critical for prevention of in vivo oxygen toxicity. Free SOD and catalase injected i.v. in the absence or presence of control liposomes did not increase corresponding lung enzyme activities or survival time in 100% oxygen. These studies show that O2- and H2O2 are important mediators of oxygen toxicity and that intracellular delivery of oxygen protective enzymes can reduce tissue injury owing to overproduction of partially reduced oxygen species.  相似文献   

19.
Metal ions and oxygen radical reactions in human inflammatory joint disease   总被引:7,自引:0,他引:7  
Activated phagocytic cells produce superoxide (O2-) and hydrogen peroxide (H2O2); their production is important in bacterial killing by neutrophils and has been implicated in tissue damage by activated phagocytes. H2O2 and O2- are poorly reactive in aqueous solution and their damaging actions may be related to formation of more reactive species from them. One such species is hydroxyl radical (OH.), formed from H2O2 in the presence of iron- or copper-ion catalysts. A major determinant of the cytotoxicity of O2- and H2O2 is thus the availability and location of metal-ion catalysts of OH. formation. Hydroxyl radical is an initiator of lipid peroxidation. Iron promoters of OH. production present in vivo include ferritin, and loosely bound iron complexes detectable by the 'bleomycin assay'. The chelating agent Desferal (desferrioxamine B methanesulphonate) prevents iron-dependent formation of OH. and protects against phagocyte-dependent tissue injury in several animal models of human disease. The use of Desferal for human treatment should be approached with caution, because preliminary results upon human rheumatoid patients have revealed side effects. It is proposed that OH. radical is a major damaging agent in the inflamed rheumatoid joint and that its formation is facilitated by the release of iron from transferrin, which can be achieved at the low pH present in the micro-environment created by adherent activated phagocytic cells. It is further proposed that one function of lactoferrin is to protect against iron-dependent radical reactions rather than to act as a catalyst of OH. production.  相似文献   

20.
The hypothesis that glucose deprivation-induced cytotoxicity in transformed human cells is mediated by mitochondrial O2*- and H2O2 was first tested by exposing glucose-deprived SV40-transformed human fibroblasts (GM00637G) to electron transport chain blockers (ETCBs) known to increase mitochondrial O2*- and H2O2 production (antimycin A (AntA), myxothiazol (Myx), or rotenone (Rot)). Glucose deprivation (2-8 h) in the presence of ETCBs enhanced parameters indicative of oxidative stress (i.e. GSSG and steady-state levels of oxygen-centered radicals) as well as cytotoxicity. Glucose deprivation in the presence of AntA also significantly enhanced cytotoxicity and parameters indicative of oxidative stress in several different human cancer cell lines (PC-3, DU145, MDA-MB231, and HT-29). In addition, human osteosarcoma cells lacking functional mitochondrial electron transport chains (rho0) were resistant to glucose deprivation-induced cytotoxicity and oxidative stress in the presence of AntA. In the absence of ETCBs, aminotriazole-mediated inactivation of catalase in PC-3 cells demonstrated increases in intracellular steady-state levels of H2O2 during glucose deprivation. Finally, in the absence of ETCBs, overexpression of manganese containing superoxide dismutase and/or mitochondrial targeted catalase using adenoviral vectors significantly protected PC-3 cells from toxicity and oxidative stress induced by glucose deprivation with expression of both enzymes providing greater protection than was seen with either alone. Overall, these findings strongly support the hypothesis that mitochondrial O2*- and H2O2 significantly contribute to glucose deprivation-induced cytotoxicity and metabolic oxidative stress in human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号