首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model of the structure of vertebrate Z-lines and Z-line analogs is introduced and supported by evidence from electron microscope studies of wide Z-lines (rat and feline soleus, and feline and canine cardiac muscles), narrow Z-lines (guppy, newt and frog skeletal muscles), and Z-rods (from a patient with nemaline myopathy and from cardiac muscles of aged dog). The model is based on a pair of Z-filaments (termed a Z-unit), which are linked near their centers at a 90 degrees angle and form bridges between neighboring antipolar thin (actin) filaments. A square lattice of four Z-filament pairs (the basic structure of the Z-line, termed a Z-line unit) defines the geometrical position of the I-square unit. In this native state of the Z-line, small square and large square net forms appear in cross-section. Other cross-sectional patterns of Z-lines, including basket-weave and diagonal-square net patterns, can be explained by detachment of the Z-filament from the Z-filament binding region within each Z-filament pair due to chemical or physical stress. Dissection of Z-lines and Z-line analogs with calcium-activated neutral protease provides evidence that the width of all wide Z-line structures is determined by the amount of overlap of antipolar thin filaments from adjacent sarcomeres. Longitudinal patterns of narrow and wide Z-lines are shown and described in relation to the model. To test the proposed model, the dynamics of the Z-line unit structure were computer-simulated. An attempt was made to correlate longitudinal (z direction) and cross-sectional (x and y directions) patterns and to determine the amount of movement of thin or Z-filaments that is required to explain the diversity observed in cross-sectional patterns of Z-lines. The computer simulations demonstrated that the structural transitions among the small square, and therefore large square net, as well as basket-weave and diagonal-square net forms seen in cross-sections could be caused by movements of thin filaments less than 10 nm in any direction (x, y or z).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
A Nebulin Ruler Does Not Dictate Thin Filament Lengths   总被引:1,自引:0,他引:1  
To generate force, striated muscle requires overlap between uniform-length actin and myosin filaments. The hypothesis that a nebulin ruler mechanism specifies thin filament lengths by targeting where tropomodulin (Tmod) caps the slow-growing, pointed end has not been rigorously tested. Using fluorescent microscopy and quantitative image analysis, we found that nebulin extended 1.01-1.03 μm from the Z-line, but Tmod localized 1.13-1.31 μm from the Z-line, in seven different rabbit skeletal muscles. Because nebulin does not extend to the thin filament pointed ends, it can neither target Tmod capping nor specify thin filament lengths. We found instead a strong correspondence between thin filament lengths and titin isoform sizes for each muscle. Our results suggest the existence of a mechanism whereby nebulin specifies the minimum thin filament length and sarcomere length regulates and coordinates pointed-end dynamics to maintain the relative overlap of the thin and thick filaments during myofibril assembly.  相似文献   

3.
Fine structure of the honeybee Z-disc   总被引:1,自引:0,他引:1  
Z-discs from the dorsal longitudinal indirect flight muscles of the honeybee (Apis mellifera) are perforated with hundreds of triangular-shaped tubes ordered into an hexagonal array. Each tube is surrounded by 80 Å thick rims which incorporate six thin filaments, three from each bordering sarcomere. Although the triangular rims of the tubes are oriented identically in any plane perpendicular to the fibril axis, this orientation changes as the tubes cross the Z-line. The tubes rotate approximately 60 ° about an axis parallel to that of the fibril in passing from one I-Z junction to another.On the basis of filament counting in the A (overlap zone) and I bands of stretched myofibrils, it is concluded that the primary filaments are physically continuous with the Z-lines by material which appears to participate both in the formation of Z-rim substance and the surrounding matrix.Finally, evidence is presented to support the view that filament lattices of adjacent sarcomeres are displaced from one another, so that each thick filament faces the trigonal position of three thick filaments on the other side of the Z-disc.  相似文献   

4.
The formin family proteins play pivotal roles in actin filament assembly via the FH2 domain. The mammalian formin Fhod3 is highly expressed in the heart, and its mRNA in the adult heart contains exons 11, 12, and 25, which are absent from non-muscle Fhod3 isoforms. In cultured neonatal cardiomyocytes, Fhod3 localizes to the middle of the sarcomere and appears to function in its organization, although it is suggested that Fhod3 localizes differently in the adult heart. Here we show, using immunohistochemical analysis with three different antibodies, each recognizing distinct regions of Fhod3, that Fhod3 localizes as two closely spaced bands in middle of the sarcomere in both embryonic and adult hearts. The bands are adjacent to the M-line that crosslinks thick myosin filaments at the center of a sarcomere but distant from the Z-line that forms the boundary of the sarcomere, which localization is the same as that observed in cultured cardiomyocytes. Detailed immunohistochemical and immuno-electron microscopic analyses reveal that Fhod3 localizes not at the pointed ends of thin actin filaments but to a more peripheral zone, where thin filaments overlap with thick myosin filaments. We also demonstrate that the embryonic heart of mice specifically expresses the Fhod3 mRNA isoform harboring the three alternative exons, and that the characteristic localization of Fhod3 in the sarcomere does not require a region encoded by exon 25, in contrast to an essential role of exons 11 and 12. Furthermore, the exon 25-encoded region appears to be dispensable for actin-organizing activities both in vivo and in vitro, albeit it is inserted in the catalytic FH2 domain.  相似文献   

5.
The structure of the shell muscle of eleven species of patellidlimpet is described from light and transmission electron microscopestudies. Although the muscle has many structural characteristicstypical of molluscan smooth muscle, it also has a number ofunusual features. At the electron microscope level two myofibretypes are distinguishable. Type I cells, present in all species,contain conventional contractile apparatus in the form of thickand thin filaments. Thick filaments contain paramyosin and varyin diameter between 20—180 nm. An axial striation witha repeat of 14.2 nm is calculated from optically diffractedmicrographs of isolated thick filaments. Transverse sectionsof thick filaments reveal bands from which the transverse repeatof the paramyosin crystal lattice is calculated. Type II myofibres,which are present in five species, contain a novel arrangementof thin filaments with electron-dense regions at intervals of80–150 nm. The striated thin filaments are similar inappearance to the microfilament bundles and stress-fibres ofnon-muscle cells. They also have similarities to the leptomericorganelles of some vertebrate muscle tissues. Associated withthe muscle is an unusually large amount of collagen which hasa periodicity of 62 nm calculated from optical diffraction patternsof isolated collagen fibrils. (Received 3 July 1989; accepted 12 October 1989)  相似文献   

6.
Isolation and composition of thick filaments from rabbit skeletal muscle   总被引:12,自引:0,他引:12  
A method has been developed for the isolation of thick filaments from rabbit skeletal muscle. We found that the thick filaments of this muscle are readily dispersed in the presence of a relaxing medium if the M and Z-line structures are first extracted in a low-salt solvent system. Thick filaments were separated from thin filaments by zone sedimentation in a 10% to 30% glycerol density gradient. The isolated filaments are homogeneous in length (1.5 to 1.6 μm) and retain the physical characteristics of these structures observed in sectioned muscle. Gel electrophoresis of thick filaments in the presence of sodium dodecyl sulfate showed a band of C-protein as well as bands with mobilities characteristic of the heavy and light chains of myosin. No other protein species was detected in these experiments. Thus our results provide evidence against the presence of a special protein component which would serve as the core of the skeletal thick filament structure. From the relative stain density of bands, the molar ratio of C-protein to myosin was estimated to be 1 to 5.8.  相似文献   

7.
Compositional studies of myofibrils from rabbit striated muscle   总被引:31,自引:16,他引:15       下载免费PDF全文
The localization of high-molecular-weight (80,000-200,000-daltons) proteins in the sarcomere of striated muscle has been studied by coordinated electron-microscopic and sodium dodecyl sulfate (SDS) gel electrophoretic analysis of native myofilaments and extracted and digested myofibrils. Methods were developed for the isolation of thick and thin filaments and of uncontracted myofibrils which are devoid of endoproteases and membrane fragments. Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure. Extraction of uncontracted myofibrils with a relaxing solution of high ionic strength results in the complete disappearance of the A band and M line. In this extract, five other protein bands in addition to myosin are resolved on SDS gels: bands M 1 (190,000 daltons) and M 2 (170,000 daltons), which are suggested to be components of the M line; M 3 (150,000 daltons), a degradation product; and a doublet M 4, M 5 (140,000 daltons), thick-filament protein having the same mobility as C protein. Extraction of myofibrils with 0.15% deoxycholate, previously shown to remove Z-line density, releases a doublet Z 1, Z 2 (90,000 daltons) with the same mobility as alpha-actinin, as well as proteins of 60,000 daltons and less, and small amounts of M 1, M 2, M 4, and M 5; these proteins were not extracted with 0.5% Triton X-100. The C, M-line, and Z-line proteins and/or their binding to myofibrils are very sensitive to tryptic digestion, whereas the M 3 (150,000 daltons) component and an additional band at 110,000 daltons are products of proteolysis. Gentle treatment of myofibrils with an ATP relaxing solution results in the release of thick and thin myofilaments which can be pelleted by 100,000-g centrifugation. These myofilaments lack M-and Z-line structure when examined with the electron microscope, and their electrophoretograms are devoid of the M 1, M 2, Z 1, and Z 2 bands. The M 4, M 5 (C-protein doublet), and M 3 bands, however, remain associated with the filaments.  相似文献   

8.
The ultrastructure of the Z-disc of the rabbit psoas muscle was elucidated by electron microscopy using negative staining technique. Conclusions summarized from this work are as follow: (a) Z-disc involves two layers of Z-filaments, i.e. connecting filaments, which bind thin filaments of adjacent I-discs in the Z-line region. These layers are spaced about 380 A apart. (b) Z-filaments measure 380 A X 30 A. (c) The angle between the connecting filaments and the thin filaments depends on ionic conditions and varies from 20 degrees to 90 degrees. (d) We conclude that alpha-actinin is a structural component of Z-filaments, since dimensions of Z-filaments and their interaction with thin filaments are similar to those of alpha-actinin.  相似文献   

9.
The structure of the caudal muscle in the tadpole larva of the compound ascidian Distaplia occidentalis has been investigated with light and electron microscopy. The two muscle bands are composed of about 1500 flattened cells arranged in longitudinal rows between the epidermis and the notochord. The muscle cells are mononucleate and contain numerous mitochondria, a small Golgi apparatus, lysosomes, proteid-yolk inclusions, and large amounts of glycogen. The myofibrils and sarcoplasmic reticulum are confined to the peripheral sarcoplasm. Myofibrils are discrete along most of their length but branch near the tapered ends of the muscle cell, producing a Felderstruktur. The myofibrils originate and terminate at specialized intercellular junctional complexes. These myomuscular junctions are normal to the primary axes of the myofibrils and resemble the intercalated disks of vertebrate cardiac muscle. The myofibrils insert at the myomuscular junction near the level of a Z-line. Thin filaments (presumably actin) extend from the terminal Z-line and make contact with the sarcolemma. These thin filaments frequently appear to be continuous with filaments in the extracellular junctional space, but other evidence suggests that the extracellular filaments are not myofilaments. A T-system is absent, but numerous peripheral couplings between the sarcolemma and cisternae of the sarcoplasmic reticulum (SR) are present on all cell surfaces. Cisternae coupled to the sarcolemma are continuous with transverse components of SR which encircle the myofibrils at each I-band and H-band. The transverse component over the I-band consists of anastomosing tubules applied as a single layer to the surface of the myofibril. The transverse component over the H-band is also composed of anastomosing tubules, but the myofibrils are invested by a double or triple layer. Two or three tubules of sarcoplasmic reticulum interconnect consecutive transverse components. Each muscle band is surrounded by a thin external lamina. The external lamina does not parallel the irregular cell contours nor does it penetrate the extracellular space between cells. In contracted muscle, the sarcolemmata at the epidermal and notochordal boundaries indent to the level of each Z-line, and peripheral couplings are located at the base of the indentations. The external lamina and basal lamina of the epidermis are displaced toward the indentations. The location, function, and neuromuscular junctions of larval ascidian caudal muscle are similar to vertebrate somatic striated muscle. Other attributes, including the mononucleate condition, transverse myomuscular junctions, prolific gap junctions, active Golgi apparatus, and incomplete nervous innervation are characteristic of vertebrate cardiac muscle cells.  相似文献   

10.
The lateroventral muscles of Glomeris marginata keep the animal rolled up and are able to develop and maintain great tension. Their fibers are not equipped with a particularly strong contractile apparatus but can super-contract. The sarcomere shortens its resting length by up 60% and in a typical supercontraction the thick filaments pass through the Z-line into adjacent sarcomeres. The Z-line structure changes according to the contraction state: It passes from a homogeneous, dense zig-zag line in decontracted fibers to a rarified, vaguely outlined Z-band in supercontracted fibers, in which it is possible to see actin and myosin filaments. The Z-line is thus involved in an active expanding process and is functionally very different from the fragmented and discontinuous Z-line of “classical” supercontracting muscles. The different meaning of the two cases of supercontraction is discussed.  相似文献   

11.
Titin (also known as connectin) is a giant filamentous protein whose elastic properties greatly contribute to the passive force in muscle. In the sarcomere, the elastic I-band segment of titin may interact with the thin filaments, possibly affecting the molecule's elastic behavior. Indeed, several studies have indicated that interactions between titin and actin occur in vitro and may occur in the sarcomere as well. To explore the properties of titin alone, one must first eliminate the modulating effect of the thin filaments by selectively removing them. In the present work, thin filaments were selectively removed from the cardiac myocyte by using a gelsolin fragment. Partial extraction left behind approximately 100-nm-long thin filaments protruding from the Z-line, whereas the rest of the I-band became devoid of thin filaments, exposing titin. By applying a much more extensive gelsolin treatment, we also removed the remaining short thin filaments near the Z-line. After extraction, the extensibility of titin was studied by using immunoelectron microscopy, and the passive force-sarcomere length relation was determined by using mechanical techniques. Titin's regional extensibility was not detectably affected by partial thin-filament extraction. Passive force, on the other hand, was reduced at sarcomere lengths longer than approximately 2.1 microm, with a 33 +/- 9% reduction at 2.6 microm. After a complete extraction, the slack sarcomere length was reduced to approximately 1.7 microm. The segment of titin near the Z-line, which is otherwise inextensible, collapsed toward the Z-line in sarcomeres shorter than approximately 2.0 microm, but it was extended in sarcomeres longer than approximately 2.3 microm. Passive force became elevated at sarcomere lengths between approximately 1.7 and approximately 2.1 microm, but was reduced at sarcomere lengths of >2.3 microm. These changes can be accounted for by modeling titin as two wormlike chains in series, one of which increases its contour length by recruitment of the titin segment near the Z-line into the elastic pool.  相似文献   

12.
The method of tissue embedding in melamine resin was applied to rat skeletal muscle. This method does not require tissue dehydration with organic solvents; only aqueous solutions are used. Electron micrographs of muscles embedded in melamine differ from those embedded in the conventional epoxy resin. In melamine-embedded muscles the actin and myosin filaments appear larger in diameter and subunits can be recognized in cross-sectioned myosin filaments. Within the Z-line, the characteristic patterns described for muscles embedded in epoxy resin are not visible; the spaces between the actin filaments are filled with electron-dense material. This suggests that the Z-line is more compact than could be concluded from epoxy resin-embedded muscle specimens. The M-line appears to be different from what is observed in epoxy-embedded muscle. The membranes appear as several clearly delineated layers. Dehydration rather than the action of the organic solvents per se is the main reason for the differences in the structure of the contractile apparatus between melamine- and epoxy-embedded muscles.  相似文献   

13.
Force production in skeletal muscle is proportional to the amount of overlap between the thin and thick filaments, which, in turn, depends on their lengths. Both thin- and thick-filament lengths are precisely regulated and uniform within a myofibril. While thick-filament lengths are essentially constant across muscles and species (~1.65 μm), thin-filament lengths are highly variable both across species and across muscles of a single species. Here, we used a high-resolution immunofluorescence and image analysis technique (distributed deconvolution) to directly test the hypothesis that thin-filament lengths vary across human muscles. Using deltoid and pectoralis major muscle biopsies, we identified thin-filament lengths that ranged from 1.19 ± 0.08 to 1.37 ± 0.04 μm, based on tropomodulin localization with respect to the Z-line. Tropomodulin localized from 0.28 to 0.47 μm further from the Z-line than the NH(2)-terminus of nebulin in the various biopsies, indicating that human thin filaments have nebulin-free, pointed-end extensions that comprise up to 34% of total thin-filament length. Furthermore, thin-filament length was negatively correlated with the percentage of type 2X myosin heavy chain within the biopsy and shorter in type 2X myosin heavy chain-positive fibers, establishing the existence of a relationship between thin-filament lengths and fiber types in human muscle. Together, these data challenge the widely held assumption that human thin-filament lengths are constant. Our results also have broad relevance to musculoskeletal modeling, surgical reattachment of muscles, and orthopedic rehabilitation.  相似文献   

14.
V B Savel'ev 《Biofizika》1985,30(5):873-877
Dependence of the intensities of low-angle equatorial reflections from frog live resting sartorius muscle on sarcomere length between 1.95 micron and 3.1 micron were studied in stretch and shortening regimes. It is found that intensities of the (10), (20), (30) and Z-reflections increase at sarcomere length increase from about 2 micron, reach maximum value at sarcomere length between 2.3 micron and 2.7 micron, and then fall at further increase of the sarcomere length. The (11) and (21) intensities decrease at sarcomere length increase. A conclusion is drawn that tetragonal lattice of the thin filaments near Z-line gives essential contribution to Z-reflection together with Z-line. It is proposed that hexagonal lattice of A-band and tetragonal lattice of the thin filaments distort each other at sarcomere length less than 2.3 micron and have the most order at sarcomere length between 2.3 micron and 2.7 micron. At further increase of the sarcomere length the packing of both lattices deteriorates apparently due to other factors than in the case of the short sarcomere length.  相似文献   

15.
The flight-related tergo-coxal muscles of flying and flightless beetles are compared. In the flying beetle, Pachynoda sinuata, the myofibrils and cylindrical and the myofilaments packed in double hexagonal arrays. The sarcomeres are short (2.8 micrometer) and wide with many large, closely packed adjacent mitochondria but the sarcoplasmic reticulum is poorly developed in this fibrillar (asynchronous) muscle. Sarcoplasmic glycogen in rosette form is abundant. In the flightless beetle, Anthia thoracica, the myofibrils are lamellar-like with sarcomeres of 5.3 micrometer. The myosin filaments form a single hexagonal array each thick filament having an orbital of 11 to 12 thin filaments. The width of the Z-line (120 nm) of A. thoracia muscle was twice that of the Z-line of P. sinuata muscle. The sarcoplasmic reticulum and T-system are well-developed in this afibrillar (synchronous) muscle. Few glycogen granules are present. Triangular projections of the sarcolemma occur regularly opposite the Z-lines in A. thoracica and they appear to extend into the Z-lines. Membranous connections joint adjacent Z-lines in A. thoracica and occasionally in P. sinuata.  相似文献   

16.
Summary The fluorescent analogs of phalloidin (rhodamine-and fluorescein-phalloidin) bind tightly to the skinned fibres of rabbit psoas muscle at essentially the same sites as phalloidin and mainly stain the known regions of actin localization in the sarcomere: the thin filaments and Z bands. On both sides of the Z bands, unstained zones were observed, suggesting the presence of proteins tightly bound to the thin filaments. In myofibrils which are stretched to such an extent that the actin and myosin filaments do not overlap, stained bands could also be seen at the myosin-band border, which suggests the localization of actin at these sites.  相似文献   

17.
Summary The alary muscles of Locusta migratoria adults make up the major tissue of the dorsal diaphragm which separates pericardial and perivisceral sinuses in the abdomen. The alary muscles are striated with a sarcomere at rest measuring about 9 m. The Z-line has a staggered-beaded arrangement with A-bands and I-bands readily discernable. Thick myofilaments are surrounded by 10 or more thin filaments. The sarcoplasm has few mitochondria near the area of the Z-line, dyads are present and sarcoplasmic reticulum is poorly developed. Axons which innervate the alary muscle are either contained within invaginated folds of the sarcolemma of the muscle cells or the muscle cells send finger-like projections to envelop the axons. The synaptic terminals contain synaptic vesicles between 40 and 45 nm in diameter and a few electron-dense granules near or less than 170 nm in diameter. Away from synaptic terminals the axon profiles show few or no granules. The axons are accompanied everywhere by well-developed glial cells. This then is not typical neurosecretomotor innervation, however, the presence of electron-dense granules suggests the possibility of peptidergic neurotransmission.  相似文献   

18.
杨新宇  蒋锦昌 《昆虫学报》1995,38(2):173-178
鸣鸣蝉Onvotympana maculaticollit Motsch的发声肌平均含193个初级肌束,多数初级肌束含9-10条肌纤维,其顶、底瑞的附着结构仅由柱状粘和细胞层组成。每条肌纤维约含1 900根肌原纤维,多数肌原纤维的长,宽和截面分别约0.77μm、0.68μm和0.53μm2.井约含200根粗肌丝,其粗细肌丝的比值一般为3∶1。肌小节的长度和z线的宽度分别约3μm 和0.2μm.三联管分别位于距两端z线约0.75μm处。肌原纤维、线粒体和微气管-肌质网的面积系数分别约31.3%、46.O%和11.9%。肌小节中粗肌丝纵贯两端z线,中间无1带;细肌丝由z线相向延伸到肌小节中央,其空区约0.15-0.25μm,并无M线。这些结构特征不仅使发声肌能够利用有限的几何空间产生最大的张力,并可适应高速串的收缩运动。  相似文献   

19.
A new approach was used to study transient structural states of cross-bridges during activation of muscle fibers. Rabbit skinned muscle fibers were rapidly and synchronously activated from the rigor state by photolysis of caged ATP in the presence of Ca2+. At several different times during the switch from rigor to fully active tension development, the fibers were rapidly frozen on a liquid helium-cooled metal block, freeze-substituted, and examined in an electron microscope. The limits of structural preservation and resolution with this technique were analyzed. We demonstrate that the resolution of our images is sufficient to draw the following conclusions about cross-bridge structure. Rigor cross-bridges point away from the Z-line and most of them are wider near the thin filaments than near the backbone of the thick filaments. In contrast, cross-bridges in actively contracting fibers stretch between the thick and thin filaments at a variable angle, and are uniformly thin. Diffraction patterns computed from contracting muscle show layer lines both at 38 and 43 nm indicating that active cross-bridges contribute mass to both the actin- and myosin-based helical periodicities. The images obtained from fibers frozen 20 ms after release of ATP show a mixture of rigor and active type cross-bridge configurations. There is little evidence of cross-bridges with the rigor shape by 50 ms, and the difference in configurations between 50 and 300 ms after photolysis is surprisingly subtle.  相似文献   

20.
The extensibility of the myofilaments in vertebrate skeletal muscle was studied by stretching glycerinated rabbit psoas muscle fibers in rigor state and examining the resulting extension of sarcomere structures under an electron microscope. Although stretches applied to rigor fibers produced a successive yielding of the weakest sarcomeres, the length of the remaining intact sarcomeres in many myofibrils was fairly uniform, being definitely longer than the sarcomeres in the control, nonstretched part of rigor fibers. The stretch-induced increase in sarcomere length was found to be taken up by the extension of the H zone and the I band, whereas the amount of overlap between the thick and thin filaments did not change appreciably with stretches of 10-20%. The thick filament extension in the H zone was localized in the bare regions, whereas the thin filament extension in the I band appeared to take place uniformly along the filament length. No marked increase in the Z-line width was observed even with stretches of 20-30%. These results clearly demonstrate the extensibility of the thick and thin filaments. The possible contribution of the myofilament compliance to the series elastic component (SEC) in vertebrate skeletal muscle fibers is discussed on the basis of the electron microscopic data and the force-extension curve of the SEC in rigor fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号