首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In polycystic kidney disease (PKD), polycystin-2 (PC2) is frequently mutated or truncated in the C-terminal cytoplasmic tail (PC2-C). The currently accepted model of PC2-C consists of an EF-hand motif overlapping with a short coiled coil; however, this model fails to explain the mechanisms by which PC2 truncations C-terminal to this region lead to PKD. Moreover, direct PC2 binding to inositol 1,4,5-trisphosphate receptor, KIF3A, and TRPC1 requires residues in PC2-C outside this region. To address these discrepancies and investigate the role of PC2-C in PC2 function, we performed de novo molecular modeling and biophysical analysis. De novo molecular modeling of PC2-C using the ROBETTA server predicts two domains as follows: an EF-hand motif (PC2-EF) connected by a linker to a previously unidentified C-terminal coiled coil (PC2-CC). This model differs substantially from the current model and correlates with limited proteolysis, matrix-assisted laser desorption/ionization mass spectroscopy, N-terminal sequencing, and improved coiled coil prediction algorithms. PC2-C is elongated and oligomerizes through PC2-CC, as measured by analytical ultracentrifugation and size exclusion chromatography, whereas PC2-EF is globular and monomeric. We show that PC2-C and PC2-EF have micromolar affinity for calcium (Ca2+) by isothermal titration calorimetry and undergo Ca2+-induced conformational changes by circular dichroism. Mutation of predicted EF-hand loop residues in PC2 to alanine abolishes Ca2+ binding. Our results suggest that PC2-CC is involved in PC2 oligomerization, and PC2-EF is a Ca2+-sensitive switch. PKD-associated PC2 mutations are located in regions that may disrupt these functions, providing structural insight into how PC2 mutations lead to disease.  相似文献   

2.
Mutations in genes encoding polycystin-1 (PC1) and polycystin-2 cause autosomal dominant polycystic kidney disease. The polycystin protein family is composed of Ca2+-permeable pore-forming subunits and receptor-like integral membrane proteins. Here we describe a novel member of the polycystin-1-like subfamily, polycystin-1L2 (PC1L2), encoded by PKD1L2, which has various alternative splicing forms with two translation initiation sites. PC1L2 short form starts in exon 12 of the long form. The longest open reading frame of PKD1L2 short form, determined from human testis cDNA, encodes a 1775-amino-acid protein and 32 exons, whereas the long form is predicted to encode a 2460-residue protein. Both forms have a small receptor for egg jelly domain, a G-protein-coupled receptor proteolytic site, an LH2/PLAT, and 11 putative transmembrane domains, as well as a number of rhodopsin-like G-protein-coupled receptor signatures. RT-PCR analysis shows that the short form, but not the long form, of human PKD1L2 is expressed in the developing and adult heart and kidney. Furthermore, by GST pull-down assay we observed that PC1L2 and polycystin-1L1 are able to bind to specific G-protein subunits. We also show that PC1 C-terminal cytosolic domain binds to Galpha12, Galphas, and Galphai1, while it weakly interacts with Galphai2. Our results indicate that both PC1-like molecules may act as G-protein-coupled receptors.  相似文献   

3.
Most patients with autosomal dominant polycystic kidney disease (ADPKD) harbor mutations truncating polycystin-1 (PC1) or polycystin-2 (PC2), products of the PKD1 and PKD2 genes, respectively. A third member of the polycystin family, polycystin-L (PCL), was recently shown to function as a Ca(2+)-modulated nonselective cation channel. More recently, PC2 was also shown to be a nonselective cation channel with comparable properties to PCL, though the membrane targeting of PC2 likely varies with cell types. Here we show that PC2 expressed heterologously in Xenopus oocytes is targeted to intracellular compartments. By contrast, a truncated form of mouse PC2 corresponding to a naturally occurring human mutation R742X is targeted predominantly to the plasma membrane where it mediates K(+), Na(+), and Ca(2+) currents. Unlike PCL, the truncated form does not display Ca(2+)-activated transport activities, possibly due to loss of an EF-hand at the C-terminus. We propose that PC2 forms ion channels utilizing structural components which are preserved in the R742X form of the protein. Implications for epithelial cell signaling are discussed.  相似文献   

4.
Autosomal dominant polycystic kidney disease, a common cause of renal failure, arises from mutations in either the PKD1 or the PKD2 gene. The precise function of both PKD gene products polycystins (PCs) 1 and 2 remain controversial. PC2 has been localized to numerous cellular compartments, including the endoplasmic reticulum, plasma membrane, and cilia. It is unclear what pools are the most relevant to its physiological function as a putative Ca2+ channel. We employed a Xenopus oocyte Ca2+ imaging system to directly investigate the role of PC2 in inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling. Cytosolic Ca2+ signals were recorded following UV photolysis of caged IP3 in the absence of extracellular Ca2+. We demonstrated that overexpression of PC2, as well as type I IP3 receptor (IP3R), significantly prolonged the half-decay time (t1/2) of IP3-induced Ca2+ transients. However, overexpressing the disease-associated PC2 mutants, the point mutation D511V, and the C-terminally truncated mutation R742X did not alter the t1/2. In addition, we found that D511V overexpression significantly reduced the amplitude of IP3-induced Ca2+ transients. Interestingly, overexpression of the C terminus of PC2 not only significantly reduced the amplitude but also prolonged the t1/2. Co-immunoprecipitation assays indicated that PC2 physically interacts with IP3R through its C terminus. Taken together, our data suggest that PC2 and IP3R functionally interact and modulate intracellular Ca2+ signaling. Therefore, mutations in either PC1 or PC2 could result in the misregulation of intracellular Ca2+ signaling, which in turn could contribute to the pathology of autosomal dominant polycystic kidney disease.  相似文献   

5.
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder largely caused by mutations in the PKD1 and PKD2 genes that encode the transmembrane proteins polycystin-1 and -2, respectively. Both proteins appear to be involved in the regulation of cell growth and maturation, but the precise mechanisms are not yet well defined. Polycystin-2 has recently been shown to function as a Ca(2+)-permeable, non-selective cation channel. Polycystin-2 interacts through its cytoplasmic carboxyl-terminal region with a coiled-coil motif in the cytoplasmic tail of polycystin-1 (P1CC). The functional consequences of this interaction on its channel activity, however, are unknown. In this report, we show that P1CC enhanced the channel activity of polycystin-2. R742X, a disease-causing polycystin-2 mutant lacking the polycystin-1 interacting region, fails to respond to P1CC. Also, P1CC containing a disease-causing mutation in its coiled-coil motif loses its stimulatory effect on wild-type polycystin-2 channel activity. The modulation of polycystin-2 channel activity by polycystin-1 may be important for the various biological processes mediated by this molecular complex.  相似文献   

6.
Experimental evidence indicates that the membrane-associated proteins polycystin-1 and polycystin-2 operate as a receptor-calcium channel complex that regulates signaling pathways essential for modulation of renal tubulogenesis. Polycystic kidney disease is characterized by defective renal tubular structure and results from mutations in either PKD1 or PKD2 genes. Recent data suggest that polycystin-1 and polycystin-2 might localize to primary cilium in principal cells of renal collecting tubules and are thought to act as mechanosensors of fluid flow and contents. Ciliary bending by fluid flow or mechanical stimulation induce Ca(2+) release from intracellular stores, presumably to modulate ion influx in response to tubular fluid flow. Polycystins are also emerging as playing a significant role in sperm development and function. Drosophila polycystin-2 is associated with the head and tail of mature sperm. Targeted disruption of the PKD2 homolog results in nearly complete male sterility without disrupting spermatogenesis. Mutant sperm are motile but are unable to reach the female storage organs (seminal receptacles and spermathecae). The sea urchin polycystin-1-equivalent suPC2 colocalizes with the polycystin-1 homolog REJ3 to the plasma membrane over the acrosomal vesicle. This localization site suggests that the suPC2-REJ3 complex may function as a cation channel mediating acrosome reaction when sperm contact the jelly layer surrounding the egg at fertilization. Future studies leading to the identification of specific ligands for polycystins, including the signaling pathways, might define the puzzling relationship between renal tubular morphogenesis and sperm development and function.  相似文献   

7.
Autosomal dominant polycystic kidney disease is caused by loss-of-function mutations in the PKD1 or PKD2 genes encoding respectively polycystin-1 and polycystin-2. Polycystin-2 stimulates the inositol trisphosphate (IP(3)) receptor (IP(3)R), a Ca(2+)-release channel in the endoplasmic reticulum (ER). The effect of ER-located polycystin-1 is less clear. Polycystin-1 has been reported both to stimulate and to inhibit the IP(3)R. We now studied the effect of polycystin-1 and of polycystin-2 on the IP(3)R activity under conditions where the cytosolic Ca(2+) concentration was kept constant and the reuptake of released Ca(2+) was prevented. We also studied the interdependence of the interaction of polycystin-1 and polycystin-2 with the IP(3)R. The experiments were done in conditionally immortalized human proximal-tubule epithelial cells in which one or both polycystins were knocked down using lentiviral vectors containing miRNA-based short hairpins. The Ca(2+) release was induced in plasma membrane-permeabilized cells by various IP(3) concentrations at a fixed Ca(2+) concentration under unidirectional (45)Ca(2+)-efflux conditions. We now report that knock down of polycystin-1 or of polycystin-2 inhibited the IP(3)-induced Ca(2+) release. The simultaneous presence of the two polycystins was required to fully amplify the IP(3)-induced Ca(2+) release, since the presence of polycystin-1 alone or of polycystin-2 alone did not result in an increased Ca(2+) release. These novel findings indicate that ER-located polycystin-1 and polycystin-2 operate as a functional complex. They are compatible with the view that loss-of-function mutations in PKD1 and in PKD2 both cause autosomal dominant polycystic kidney disease.  相似文献   

8.
A tale of two tails: ciliary mechanotransduction in ADPKD   总被引:3,自引:0,他引:3  
Autosomal dominant polycystic kidney disease (ADPKD) is a common lethal genetic disorder, characterized by the progressive development of fluid-filled cysts in the kidney, pancreas and liver, and anomalies of the cardiovascular system. Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 (PC1) and polycystin-2 (PC2) respectively, account for almost all cases of ADPKD. However, the mechanisms by which abnormalities in PKD1 and PKD2 lead to aberrant kidney development remain unknown. Recent progress in the understanding of ADPKD has focused on primary cilia, which act as sensory transducers in renal epithelial cells. New evidence shows that a mechanosensitive signal, cilia bending, activates the PC1-PC2 channel complex. When working properly, this functional complex elicits a transient Ca(2+) influx, which is coupled to the release of Ca(2+) from intracellular stores.  相似文献   

9.
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a nonselective calcium channel. PC2 has been found to form oligomers in native tissues, suggesting that similar to other TRP channels, it may form functional homo- or heterotetramers with other TRP subunits. We have recently demonstrated that the homodimerization of PC2 is mediated by both N-terminal and C-terminal domains, and it is known that PC2 can heterodimerize with PC1, TRPC1, and TRPV4. In this paper, we report that a single cysteine residue, Cys(632), mutated in a known PKD2 pedigree, constitutes the third dimerization domain for PC2. PC2 truncation mutants lacking both N and C termini could still dimerize under nonreducing conditions. Mutation of Cys(632) alone abolished dimerization in these mutants, indicating that it was the critical residue mediating disulfide bond formation between PC2 monomers. Co-expression of C632A PC2 mutants with wild-type PC2 channels reduced ATP-sensitive endoplasmic reticulum Ca(2+) release in HEK293 cells. The combination of C632A and mutations disrupting the C-terminal coiled-coil domain (Val(846), Ile(853), Ile(860), Leu(867) or 4M) nearly abolished dimer formation and ATP-dependent Ca(2+) release. However, unlike the 4M PC2 mutant, a C632A mutant could still heterodimerize with polycystin-1 (PC1). Our results indicate that PC2 homodimerization is regulated by three distinct domains and that these events regulate formation of the tetrameric PC2 channel.  相似文献   

10.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.  相似文献   

11.
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a non-selective calcium channel. PC2 has been found to form oligomers in native tissues suggesting that it may form functional homo- or heterotetramers with other subunits, similar to other TRP channels. Our experiments unexpectedly revealed that PC2 mutant proteins lacking the known C-terminal dimerization domain were still able to form oligomers and co-immunoprecipitate full-length PC2, implying the possible existence of a proximal dimerization domain. Using yeast two-hybrid and biochemical assays, we have mapped an alternative dimerization domain to the N terminus of PC2 (NT2-1-223, L224X). Functional characterization of this domain demonstrated that it was sufficient to induce cyst formation in zebrafish embryos and inhibit PC2 surface currents in mIMCD3 cells probably by a dominant-negative mechanism. In summary, we propose a model for PC2 assembly as a functional tetramer which depends on both C- and N-terminal dimerization domains. These results have significant implications for our understanding of PC2 function and disease pathogenesis in ADPKD and provide a new strategy for studying PC2 function.  相似文献   

12.
The invariant asymmetric placement of thoracic and abdominal organs in the vertebrates is controlled by the left-asymmetric activity of the Nodal signaling cascade during embryogenesis. In the mouse embryo asymmetric induction of nodal is thought to be dependent on functional monocilia on the ventral node cells and on the Pkd2 gene, which encodes the calcium channel polycystin-2 (PC2). In humans mutations in PKD2 and PKD1 give rise to polycystic kidney disease. The PC1 and PC2 proteins are thought to function as part of a multifactorial complex. Localization of both proteins to the primary renal cilium suggested a function on cilia of the ventral node. Here we investigated Pkd1 knock-out embryos for laterality defects and found wild-type organ morphogenesis and normal expression of nodal and Pitx2. While PC2 localized to nodal cilia, no ciliary localization of PC1 was detected in mouse embryos. This finding was confirmed in an archetypical mammalian blastodisc, the rabbit embryo. Thus, absence of PC1 localization to cilia corresponded with a lack of laterality defects in Pkd1 knock-out embryos. Our results demonstrate a PC1-independent function of PC2 in left-right axis formation, and indirectly support a ciliary role of PC2 in this process.  相似文献   

13.
Autosomal dominant polycystic kidney disease (PKD) is caused by mutation of polycystin-1 or polycystin-2. Polycystin-2 is a Ca(2+)-permeable cation channel. Polycystin-1 is an integral membrane protein of less defined function. The N-terminal extracellular region of polycystin-1 contains potential motifs for protein and carbohydrate interaction. We now report that expression of polycystin-1 alone in Chinese hamster ovary (CHO) cells and in PKD2-null cells can confer Ca(2+)-permeable non-selective cation currents. Co-expression of a loss-of-function mutant of polycystin-2 in CHO cells does not reduce polycystin-1-dependent channel activity. A polycystin-1 mutant lacking approximately 2900 amino acids of the extracellular region is targeted to the cell surface but does not produce current. Extracellular application of antibodies against the immunoglobulin-like PKD domains reduces polycystin-1-dependent current. These results support the hypothesis that polycystin-1 is a surface membrane receptor that transduces the signal via changes in ionic currents.  相似文献   

14.
Polycystic kidney disease (PKD) is a common hereditary disorder which is characterized by fluid-filled cysts in the kidney. Mutation in either PKD1, encoding polycystin-1 (PC1), or PKD2, encoding polycystin-2 (PC2), are causative genes of PKD. Recent studies indicate that renal cilia, known as mechanosensors, detecting flow stimulation through renal tubules, have a critical function in maintaining homeostasis of renal epithelial cells. Because most proteins related to PKD are localized to renal cilia or have a function in ciliogenesis. PC1/PC2 heterodimer is localized to the cilia, playing a role in calcium channels. Also, disruptions of ciliary proteins, except for PC1 and PC2, could be involved in the induction of polycystic kidney disease. Based on these findings, various PKD mice models were produced to understand the roles of primary cilia defects in renal cyst formation. In this review, we will describe the general role of cilia in renal epithelial cells, and the relationship between ciliary defects and PKD. We also discuss mouse models of PKD related to ciliary defects based on recent studies. [BMB Reports 2013; 46(2): 73-79]  相似文献   

15.
16.
The Chinese herb Sparganum stoloniferum Buch.-Ham. (SBH) is frequently used to improve blood circulation and to rehabilitate vascular obstruction in traditional Chinese medicine. It was recently reported that SBH reduces the proliferation of renal epithelial cells stimulated by epidermal growth factor (EGF), and inhibits the phosphorylation of the EGF receptor. SBH has also been used as a trial drug to treat polycystic kidney disease (PKD) patients in China. The potential molecular actions of SBH on PKD remain unknown. Autosomal dominant PKD (ADPKD) is associated with mutations in polycystin-1 or polycystin-2 (PC2). PC2 and its homologue, polycystin-L (PCL), are nonselective cation channels permeable to potassium, sodium, and calcium. Here, we examine the effects of SBH on the human PCL channel expressed in Xenopus oocytes, using 2-microelectrode voltage-clamp electrophysiology and radiotracer uptake measurements. In PCL-expressing oocytes, with or without preincubation with SBH, the PCL channel was inhibited by SBH in a dose-dependent and reversible manner; a concentration of 2% SBH completely abolished the channel activation. The IC50 value for SBH was 0.48% +/- 0.03%, with a 10-min preincubation period. SBH was also found to inhibit the PCL-mediated 45Ca tracer uptake in oocytes. Our study suggests that SBH contains 1 or more yet-to-be determined components that are inhibitors of PCL channel. The therapeutic potential of SBH for ADPKD and its chemical composition remain to be investigated.  相似文献   

17.
Polycystin-1 (PC1), a 4,303-amino acid integral membrane protein of unknown function, interacts with polycystin-2 (PC2), a 968-amino acid alpha-type channel subunit. Mutations in their respective genes cause autosomal dominant polycystic kidney disease. Using a novel heterologous expression system and Ca(2+) and K(+) channels as functional biosensors, we found that full-length PC1 functioned as a constitutive activator of G(i/o)-type but not G(q)-type G-proteins and modulated the activity of Ca(2+) and K(+) channels via the release of Gbetagamma subunits. PC1 lacking the N-terminal 1811 residues replicated the effects of full-length PC1. These effects were independent of regulators of G-protein signaling proteins and were lost in PC1 mutants lacking a putative G-protein binding site. Co-expression with full-length PC2, but not a C-terminal truncation mutant, abrogated the effects of PC1. Our data provide the first experimental evidence that full-length PC1 acts as an untraditional G-protein-coupled receptor, activity of which is physically regulated by PC2. Thus, our study strongly suggests that mutations in PC1 or PC2 that distort the polycystin complex would initiate abnormal G-protein signaling in autosomal dominant polycystic kidney disease.  相似文献   

18.
Bhunia AK  Piontek K  Boletta A  Liu L  Qian F  Xu PN  Germino FJ  Germino GG 《Cell》2002,109(2):157-168
Autosomal dominant polycystic kidney disease is characterized by cyst formation in the kidney and other organs and results from mutations of PKD1 or PKD2. Previous studies suggest that their gene products have an important role in growth regulation. We now show that expression of polycystin-1 activates the JAK-STAT pathway, thereby upregulating p21(waf1) and inducing cell cycle arrest in G0/G1. This process requires polycystin-2, a channel protein, as an essential cofactor. Mutations that disrupt polycystin-1/2 binding prevent activation of the pathway. Mouse embryos lacking Pkd1 have defective STAT1 phosphorylation and p21(waf1) induction. These results suggest that one function of the polycystin-1/2 complex is to regulate the JAK/STAT pathway and explain how mutations of either gene can result in dysregulated growth.  相似文献   

19.
Mutation of the X-linked oral-facial-digital syndrome type 1 (OFD1) gene is embryonic lethal in males and results in craniofacial malformations and adult onset polycystic kidney disease in females. While the OFD1 protein localizes to centriolar satellites, centrosomes and basal bodies, its cellular function and how it relates to cystic kidney disease is largely unknown. Here, we demonstrate that OFD1 is assembled into a protein complex that is localized to the primary cilium and contains the epidermal growth factor receptor (EGFR) and domain organizing flotillin proteins. This protein complex, which has similarity to a basolateral adhesion domain formed during cell polarization, also contains the polycystin proteins that when mutant cause autosomal dominant polycystic kidney disease (ADPKD). Importantly, in human ADPKD cells where mutant polycystin-1 fails to localize to cilia, there is a concomitant loss of localization of polycystin-2, OFD1, EGFR and flotillin-1 to cilia. Together, these data suggest that polycystins are necessary for assembly of a novel flotillin-containing ciliary signaling complex and provide a molecular rationale for the common renal pathologies caused by OFD1 and PKD mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号