首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Enteric amoebae of the genus Entamoeba travel from host to host in an encysted form. We previously showed that in vitro cyst development of Entamoeba invadens requires the addition of defined amounts of multivalent galactose-terminated molecules, such as mucin, to the cultures. The amoeba surface lectin that binds mucin is presumed to convey transmembrane signals when clustered by the ligand, but the signaling molecules that function downstream of the lectin are not known. We report here that Entamoeba encystation was induced in the absence of galactose ligand when catecholamines were added to the encystation medium. Micromolar amounts of both epinephrine and norepinephrine induced encystation. Of a variety of synthetic catecholamine agonists tested, only beta(1)-adrenergic receptor agonists supported encystation, whereas alpha- and beta(2)-adrenergic receptor agonists did not. Only beta(1)-adrenergic receptor antagonists inhibited encystation, and did so even when exogenous catecholamines were not added, indicating that catecholamine binding is required for encystation and suggesting an endogenous source of the ligand. High performance liquid chromatography analysis of Entamoeba extracts showed that the amoebae themselves contain catecholamines and at least one of these is released when the cells are stimulated to encyst with galactose-terminated ligands. The presence of catecholamine binding sites on the surface of amoeba trophozoites was confirmed using radiolabeled catecholamine antagonist. Amoeba encystment was inhibited by addition of beta(1)-adrenergic receptor antagonist to cells that were stimulated to differentiate with either galactose ligand or catecholamines, but not with dibutyryl cAMP. This suggests that the amoeba catecholamine receptor functions downstream of the galactose lectin and upstream of adenylyl cyclase. This enteric protozoan parasite, therefore, contains the components of an autocrine catecholamine ligand-receptor system that may act in conjunction with a galactose lectin to regulate differentiation into the infectious cyst stage.  相似文献   

3.
4.
Encystation of Giardia lamblia is required for survival outside the host, as well as for initiation of new infections. Previously, we induced cultured G. lamblia trophozoites to encyst in vitro for the first time. During encystation, we observed the appearance of a new class of large secretory vesicle (encystation-specific vesicle; ESV) within which cyst antigens are concentrated and transported to the nascent wall. The present kinetic and physiologic studies now show that ESV are the earliest morphologic change observed in encystation. Expression of ESV, as well as subsequent encystation, are regulated by exposure to bile at the slightly alkaline pH which is typical of the human intestinal tract. ESV formation appears to be less stringently regulated than formation of water-resistant cysts because omission of either encystation stimuli or alkaline pH preferentially inhibits encystation. Since cysts do not attach, we asked when in encystation this physiologic transition occurs. We found that most encysting trophozoites remain attached until they begin to round up (greater than 24 hr). However, if they are made to detach, as early as 12 hr in encystation, well before they round up, they are defective in the ability to reattach. If trophozoites also become less able to reattach to the intestinal epithelium early in encystation in vivo, this would increase their exposure to lumenal encystation stimuli and promote encystation. These studies have provided new insights into the complex sequence of morphologic and physiologic alterations which occur during encystation of G. lamblia in vitro and their regulation by host intestinal factors.  相似文献   

5.
In the life cycle of Entamoeba parasites alternate between the colon-dwelling trophozoite and the infectious cyst forms. The physiologic stimuli that trigger differentiation of trophozoites into cysts remain undefined. On the surface of the human-infecting Entamoeba, parasites express a galactose/N-acetylgatactosamine (gal/galNAc)-binding lectin, which plays demonstrated roles in contact-dependent lysis of target cells and resistance to host complement. Using a reptilian parasite, Entamoeba invadens, to study cyst formation in vitro, we found that efficient encystation was dependent on the presence of gal-terminated ligands in the induction medium. Precise concentration ranges of several gal-terminated ligands, such as asialofetuin, gal-bovine serum albumin (gal-BSA), and mucin, functioned in encystation medium to stimulate differentiation. Greater than 10 mM levels of free gal inhibited the amoeba aggregation that precedes encystation and prevented formation of mature cysts. Inhibitory levels of gal also prevented the up-regulation of genes which normally occurs at 24 h of encystation. The surface of Entamoeba invadens was found to express a gal lectin which has a heterodimeric structure similar to that of Entamoeba histolytica. The 30 kDa light subunit (LGL) of the E. invadens lectin is similar in overall size and sequence to the LGL of E. histolytica. The heavy subunits, however, differ in size, have an identical spacing of cysteines in their extracellular domains, and have highly conserved C-terminal transmembrane and cytoplasmic domains. These results suggest a new role for the Entamoeba gal lectins in monitoring the concentrations of gal ligands in the colon and contributing to stimuli that induce encystment.  相似文献   

6.
7.
Jiráková K  Kulda J  Nohýnková E 《Protist》2012,163(3):465-479
Differentiation into infectious cysts (encystation) and multiplication of pathogenic trophozoites after hatching from the cyst (excystation) are fundamental processes in the life cycle of the human intestinal parasite Giardia intestinalis. During encystation, a bi-nucleated trophozoite transforms to a dormant tetra-nucleated cyst enveloped by a protective cyst wall. Nuclear division during encystation is not followed by cytokinesis. In contrast to the well-studied mechanism of cyst wall formation, information on nuclei behavior is incomplete and basic cytological data are lacking. Here we present evidence that (1) the nuclei divide by semi-open mitosis during early encystment; (2) the daughter nuclei coming from different parent nuclei are always arranged in pairs; (3) in both pairs, the nuclei are interconnected via bridges formed by fusion of their nuclear envelopes; (4) each interconnected nuclear pair is associated with one basal body tetrad of the undivided diplomonad mastigont; and (5) the interconnection between nuclei persists through the cyst stage being a characteristic feature of encysted Giardia. Based on the presented results, a model of nuclei behavior during Giardia differentiation is proposed.  相似文献   

8.
Giardia lamblia parasitism accounts for the majority of cases of parasitic diarrheal disease, making this flagellated eukaryote the most successful intestinal parasite worldwide. This organism has undergone secondary reduction/elimination of entire organelle systems such as mitochondria and Golgi. However, trophozoite to cyst differentiation (encystation) requires neogenesis of Golgi‐like secretory organelles named encystation‐specific vesicles (ESVs), which traffic, modify and partition cyst wall proteins produced exclusively during encystation. In this work we ask whether neogenesis of Golgi‐related ESVs during G. lamblia differentiation, similarly to Golgi biogenesis in more complex eukaryotes, requires the maintenance of distinct COPII‐associated endoplasmic reticulum (ER) subdomains in the form of ER exit sites (ERES) and whether ERES are also present in non‐differentiating trophozoites. To address this question, we identified conserved COPII components in G. lamblia cells and determined their localization, quantity and dynamics at distinct ERES domains in vegetative and differentiating trophozoites. Analogous to ERES and Golgi biogenesis, these domains were closely associated to early stages ofnewly generated ESV. Ectopic expression of non‐functional Sar1 GTPase variants caused ERES collapse and, consequently, ESV ablation, leading to impaired parasite differentiation. Thus, our data show how ERES domains remain conserved in G. lamblia despite elimination of steady‐state Golgi. Furthermore, the fundamental eukaryotic principle of ERES to Golgi/Golgi‐like compartment correspondence holds true in differentiating Giardia presenting streamlined machinery for secretory organelle biogenesis and protein trafficking. However, in the Golgi‐less trophozoites ERES exist as stable ER subdomains, likely as the sole sorting centres for secretory traffic.  相似文献   

9.
The trophozoite of Acanthamoeba transforms into a cyst, the resistant form under harmful environments such as starvation, cold and certain chemicals used in medical treatment. To investigate the factors mediating encystation, ESTs of encystation-induced A. castellanii were analysed and compared to those of trophozoites. Each EST was compared by the predicted proteins from the ESTs, to the cyst and the trophozoite by reciprocal BLAST analysis, KOG assignment, and gene annotation. In addition to the genes previously reported to encystation mediate such as cyst specific protein 21, protein kinase C, proteasome and heat shock protein, several genes like cullin 4, autophage protein 8 and ubiquitin-conjugating enzymes were identified to be related to encystation. Five kinds of proteinase genes were detected in cyst ESTs. The information of the genes expressed during encystation may open the way to further study on differentiation and resistance of cyst-forming pathogenic protozoa.  相似文献   

10.
The protozoan parasite Giardia lamblia acquires cholesterol from the environment since it is unable to synthesise cholesterol de novo and this is vital for trophozoite growth. Conversely, the lack of cholesterol was described as an essential event to trigger encystation, the differentiation of trophozoites to mature cysts. During the G. lamblia cell cycle, cholesterol is acquired as a free molecule as well as through receptor-mediated endocytosis (RME) of lipoproteins. In this work, we describe the involvement of RME in the cell differentiation process of G. lamblia. We found that a reduction in the expression of the medium subunit (Glµ2) of the giardial adaptin protein GlAP2 impaired RME, triggering the process of encystation in growing cells. Contrary to expectations, decreasing Glµ2 expression produced a cohort of trophozoites that yielded significantly less mature cysts when cells were induced to encyst. Analysis of the subcellular localization of Glµ2 and the cyst wall protein 1 (CWP1) during encystation was later performed, to dissect the process. Our results showed, on one hand, that blocking RME by inhibiting Glµ2 expression, and probably cholesterol entry, is sufficient to induce cell differentiation but not to complete the process of encystation. On the other hand, we observed that GlAP2 is necessary to accomplish the final steps of encystation by sorting CWP1 to the plasma membrane for cyst wall formation. The understanding of the mechanisms involved in cyst formation should provide novel insights into the control of giardiasis, an endemic worldwide neglected disease.  相似文献   

11.
Entamoeba histolytica, a protozoan parasite, is the etiologic agent of amoebiasis in humans. It exists in two forms—the trophozoite which is the active, dividing form, and the cyst which is dormant and can survive for prolonged periods outside the host. In most infected individuals the trophozoites exist as commensals. In a small percentage of infections, the trophozoites become invasive and penetrate the intestinal mucosa, causing ulcers. The trophozoites may reach other parts of the body—mainly liver, where they cause tissue necrosis, leading to lifethreatening abscesses. It is thought that pathogenesis of infection byEntamoeba histolytica is governed at several levels, chief among them are (i) adherence of trophozoite to the target cell, (ii) lysis of target cell, and (iii) phagocytosis of target cell. Several molecules which may be involved in these processes have been identified. A lectin inhibitable by galactose and N-acetyl-D-galactosamine is present on the trophozoite surface. This is implicated in adherence of trophozoite to the target cell. Various amoebic poreforming proteins are known, of which 5kDa protein (amoebapore) has been extensively studied. These can insert into the lipid bilayers of target cells, forming ion-channels. The phagocytic potential of trophozoites is directly linked to virulence as measured in animal models. Factors like association of bacteria with trophozoites also influence virulence. Thus, pathogenesis is determined by multiple factors and a unifying picture taking into account the relative contributions of each factor is sought. Recent technical advances, which includes the development of a transfection system to introduce genes into trophozoites, should help to understand the mechanism of pathogenesis in amoebiasis.  相似文献   

12.
13.
The Gal/GalNAc lectin of Entamoeba histolytica trophozoites plays an important role in adhesion. The distribution and final destiny of the lectin during the interaction with host cells are poorly understood. Using monoclonal and polyclonal antibodies against the lectin we studied by immunocytochemistry the in vitro and in vivo interaction of E. histolytica trophozoites with human and hamster hepatocytes. We also analyzed the presence and distribution of the lectin in a mouse model of intestinal amoebiasis. In all cases, trophozoites were highly labeled by anti-lectin antibodies. Cultured human and hamster hepatocytes in contact with, or localized at the vicinity of parasites were also labeled by anti-lectin antibodies. Most of the labeled hepatocytes showed variable degrees of cell damage. Hepatocytes distantly localized from the parasites were also stained with the anti-lectin antibodies. Immunolabeling of tissue sections from different stages of the development of experimental amoebic liver abscess in hamsters showed inflammatory foci containing lectin-labeled trophozoites, hepatocytes, and sinusoidal and inflammatory cells. Lectin-containing hepatocytes had vacuolated cytoplasm with some nuclei with a condensed appearance. Damaged intestinal epithelium also was labeled with anti-lectin antibodies in a mouse model of intestinal amoebiasis. Electron microscopy of axenically cultured trophozoites using gold-labeled monoclonal and polyclonal anti-lectin antibody showed that plasma membrane, vacuole membranes and areas of cell cytosol were labeled. Higher deposits of gold particles in plasma membrane suggestive of cell secretion were observed. Our results demonstrated that Gal/GalNAc lectin was bound and captured by different target cells, and that host cells containing the lectin showed signs of cell damage. The contribution of lectin transfer to host cells in adherence and cell injury remains to be determined.  相似文献   

14.
Entamoeba parasites multiply as trophozoites in the layer of mucus that overlies the colonic epithelium. In response to stimuli that are not understood, trophozoites stop multiplying and differentiate into cysts that are released to infect another host. In the colon, Entamoeba trophozoites are exposed to the large variety of biochemicals that are carried into or are produced within this organ. The normal bacterial population of the colon releases large amounts of short-chain fatty acids (SCFAs). These compounds have effects on the growth, differentiation and repair of the colonic epithelium that correlate with de-creased activity of a Class I/II histone deacetylase (HDAC). We found that the formation of cysts, but not the growth of trophozoite-stage Entamoeba invadens parasites, was inhibited by physiologic concentrations of SCFAs. Variable levels of cyst formation did occur if SCFA concentrations were lowered. Specific inhibitors of Class I/II-type HDACs also prevented encystation, and trophozoites exposed to these compounds had increased levels of acetylation of histone H4 and other nuclear proteins. These results suggest that production of the infectious cyst stage of Entamoeba parasites is regulated in part by the levels of SCFAs made by the bacterial population of the colon.  相似文献   

15.
Giardia lamblia is a flagellate protozoan that infects humans and other mammals and the most frequently isolated intestinal parasite worldwide. Giardia trophozoites undergo essential biological changes to survive outside the intestine of their host by differentiating into infective cysts. Cyst formation, or encystation, is considered one of the most primitive adaptive responses developed by eukaryotes early in evolution and crucial for the transmission of the parasite among susceptible hosts. During this process, proteins that will assemble into the extracellular cyst wall (CWP1 and CWP2) are transported to the cell surface within encystation-specific secretory vesicles (ESVs) by a developmentally regulated secretory pathway. Cyst wall proteins (CWPs) are maintained as a dense material inside the ESVs, but after exocytosis, they form the fibrillar matrix of the cyst wall. Little is known about the molecular mechanisms involved in granule biogenesis and discharge in Giardia, as well as the assembly of the extracellular wall. In this work, we provide evidences that a novel 54-kDa protein that exclusively localizes to the ESVs is induced during encystation similar to CWPs, proteolytically processed during granule maturation, and able to bind calcium in vitro. The gene encoding this molecule predicts a novel protein (called gGSP for G. lamblia Granule-specific Protein) without homology to any other protein reported in public databases. Nevertheless, it possesses characteristics of calcium-sequestering molecules of higher eukaryotes. Inhibition of gGSP expression abolishes cyst wall formation, suggesting that this secretory granule protein regulates Ca(2+)-dependent degranulation of ESVs during cyst wall formation.  相似文献   

16.
17.
18.
19.
20.
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号