共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Arnold SJ Stappert J Bauer A Kispert A Herrmann BG Kemler R 《Mechanisms of development》2000,91(1-2):249-258
3.
4.
5.
6.
7.
Wnt/beta-catenin signaling in development and disease 总被引:56,自引:0,他引:56
A remarkable interdisciplinary effort has unraveled the WNT (Wingless and INT-1) signal transduction cascade over the last two decades. Wnt genes encode small secreted proteins that are found in all animal genomes. Wnt signaling is involved in virtually every aspect of embryonic development and also controls homeostatic self-renewal in a number of adult tissues. Germline mutations in the Wnt pathway cause several hereditary diseases, and somatic mutations are associated with cancer of the intestine and a variety of other tissues. 相似文献
8.
Wnt/beta-catenin signaling: turning the switch 总被引:1,自引:0,他引:1
Cadigan KM 《Developmental cell》2008,14(3):322-323
9.
Wnt/beta-catenin signaling in adipogenesis and metabolism 总被引:4,自引:0,他引:4
Adipocyte differentiation consists of a complex series of events in which scores of cellular and extracellular factors interact to transform a fibroblast-like preadipocyte into a mature, lipid-filled adipocyte. Many of the pathways influencing this process have been identified using well-characterized preadipocyte culture systems and have subsequently been confirmed in animal models. Research conducted over the past decade has established the Wnt/beta-catenin signaling pathway as an important regulator of adipocyte differentiation. While initial reports implicated activators of Wnt/beta-catenin signaling as potent inhibitors of adipogenesis, recent investigations of mesenchymal cell fate, obesity, and type 2 diabetes highlight significant additional roles for Wnt signaling in metabolism and adipocyte biology. 相似文献
10.
R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis 总被引:4,自引:0,他引:4
Kazanskaya O Glinka A del Barco Barrantes I Stannek P Niehrs C Wu W 《Developmental cell》2004,7(4):525-534
We have carried out a small pool expression screen for modulators of the Wnt/beta-catenin pathway and identified Xenopus R-spondin2 (Rspo2) as a secreted activator of this cascade. Rspo2 is coexpressed with and positively regulated by Wnt signals and synergizes with Wnts to activate beta-catenin. Analyses of functional interaction with components of the Wnt/beta-catenin pathway suggest that Rspo2 functions extracellularly at the level of receptor ligand interaction. In addition to activating the Wnt/beta-catenin pathway, Rspo2 overexpression blocks Activin, Nodal, and BMP4 signaling in Xenopus, raising the possibility that it may negatively regulate the TGF-beta pathway. Antisense Morpholino experiments in Xenopus embryos and RNAi experiments in HeLa cells reveal that Rspo2 is required for Wnt/beta-catenin signaling. In Xenopus embryos depleted of Rspo2, the muscle markers myoD and myf5 fail to be activated and later muscle development is impaired. Thus, Rspo2 functions in a positive feedback loop to stimulate the Wnt/beta-catenin cascade. 相似文献
11.
12.
13.
Kouzmenko AP Takeyama K Ito S Furutani T Sawatsubashi S Maki A Suzuki E Kawasaki Y Akiyama T Tabata T Kato S 《The Journal of biological chemistry》2004,279(39):40255-40258
Wnt and estrogen signaling represent important regulatory pathways, each controlling a wide range of biological processes. While an increasing number of observations suggest potential convergence between these pathways, no direct evidence of their functional interaction has been reported. Using human colon and breast cancer cells, we found that estrogen receptor (ER) alpha- and beta-catenin precipitated within the same immunocomplexes, reciprocally enhanced the transactivation of cognate reporter genes, and were reciprocally recruited to cognate response elements in the promoters of endogenous target genes. Using transgenic Drosophila that ectopically expressed human ERalpha alone or together with metabolically stable beta-catenin/Armadillo mutants, we demonstrated genetic interaction between these signal transducers in vivo. Thus, we present here the first direct evidence of cross-talk between Wnt and estrogen signaling pathways via functional interaction between beta-catenin and ERalpha. 相似文献
14.
J Craig Cohen Janet E Larson Erin Killeen Damon Love Ken-Ichi Takemaru 《BMC developmental biology》2008,8(1):70
Background
Cystic fibrosis transmembrane conductance regulator (CFTR) was shown previously to modify stretch induced differentiation in the lung. The mechanism for CFTR modulation of lung development was examined by in utero gene transfer of either a sense or antisense construct to alter CFTR expression levels. 相似文献15.
Korswagen HC 《Developmental cell》2006,10(6):687-688
Although it is well established that reactive oxygen species (ROS) can function as intracellular messengers, the mechanism of ROS dependent signaling is largely unknown (Rhee et al.,2005). In a recent paper in Nature Cell Biology, Funato et al. (2006) demonstrate that ROS can modulate signaling by the Wnt/beta-catenin pathway. This work provides interesting new insight into cross-talk between redox and Wnt/beta-catenin signaling in normal physiology and cancer. 相似文献
16.
Guo Y Xiao L Sun L Liu F 《Physiological research / Academia Scientiarum Bohemoslovaca》2012,61(4):337-346
Wnt/beta-catenin signaling is involved in virtually every aspect of embryonic development and also controls homeostatic self-renewal in a number of adult tissues. Recently, emerging evidence from researches of organ fibrosis suggest that sustained Wnt/beta-catenin pathway reactivation is linked to the pathogenesis of fibrotic disorders. Here we focus on Wnt/beta-catenin-related pathogenic effects in different organs, such as lung fibrosis, liver fibrosis, skin fibrosis and renal fibrosis. Additionally, Wnt/beta-catenin signaling works in a combinatorial manner with TGF-beta signaling in the process of fibrosis, and TGF-beta signaling can induce expression of Wnt/beta-catenin superfamily members and vice versa. Moreover, network analysis, based on pathway databases, revealed that key factors in the Wnt pathway were targeted by some differentially expressed microRNAs detected in fibrosis diseases. These findings demonstrated the crosstalks between Wnt/beta-catenin pathway and TGF-beta signalings, and microRNAs, highlighting the role of Wnts in organ fibrogenesis. Most importantly, nowadays there is a variety of Wnt pathway inhibitors which give us the potential therapeutic feasibility, modulation of the Wnt pathway may, therefore, present as a suitable and promising therapeutic strategy in the future. 相似文献
17.
The Wnt/beta-catenin signaling pathway is critical for the establishment of organizer and embryonic body axis in Xenopus development. Here, we present evidence that Xenopus Rap2, a member of Ras GTPase family, is implicated in Wnt/beta-catenin signaling during the dorsoventral axis specification. Ectopic expression of XRap2 can lead to neural induction without mesoderm differentiation. XRap2 dorsalizes ventral tissues, inducing axis duplication, organizer-specific gene expression and convergent extension movements. Knockdown of XRap2 causes ventralized phenotypes including shortened body axis and defective dorsoanterior patterning, which are associated with aberrant Wnt signaling. In line with this, XRap2 depletion inhibits beta-catenin stabilization and the induction of ectopic dorsal axis and Wnt-responsive genes caused by XWnt8, Dsh or beta-catenin, but has no effect on the signaling activities of a stabilized beta-catenin. Its knockdown also disrupts the vesicular localization of Dsh, thereby inhibiting Dsh-mediated beta-catenin stabilization and the membrane recruitment and phosphorylation of Dsh by frizzled signaling. Taking together, we suggest that XRap2 is involved in Wnt/beta-catenin signaling as a modulator of the subcellular localization of Dsh. 相似文献
18.
Liu F Chu EY Watt B Zhang Y Gallant NM Andl T Yang SH Lu MM Piccolo S Schmidt-Ullrich R Taketo MM Morrisey EE Atit R Dlugosz AA Millar SE 《Developmental biology》2008,313(1):210-224
Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth. 相似文献
19.
Liebner S Corada M Bangsow T Babbage J Taddei A Czupalla CJ Reis M Felici A Wolburg H Fruttiger M Taketo MM von Melchner H Plate KH Gerhardt H Dejana E 《The Journal of cell biology》2008,183(3):409-417
The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown. 相似文献