首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to examine the effects of IL-1 beta on integrin expression in MG-63 human osteosarcoma cells. Human recombinant IL-1 beta (rIL-1 beta) produced significant increases in both alpha 2- and alpha 5-subunit mRNA levels, as well as a smaller increase in alpha v-subunit mRNA. In contrast, IL-1 beta decreased alpha 4-subunit mRNA levels by approximately 30% relative to untreated controls. These findings suggest that human IL-1 beta differentially regulates expression of integrins. When cultures were treated with both IL-1 beta and the cyclooxygenase inhibitor, indomethacin, the expression of alpha 2-, alpha 5-, and alpha v-subunit mRNA levels were dramatically increased relative to untreated controls; co-treatment with 0.5 mM prostaglandin E2 (PGE2) partially reversed this effect. Indomethacin alone did not affect integrin mRNA levels. Treatment with IL-1 beta or IL-1 beta + indomethacin also induced significant changes in MG-63 morphology (i.e., increased cell elongation) and increased the ability of cells to contract collagen gels. PGE2 reversed the above effects on cell morphology and gel contraction. These findings indicate that (a) IL-1 beta differentially regulates the expression of integrins and (b) that PGE2, which is induced by IL-1 beta, may provide a negative feedback loop which counteracts the stimulatory effect of IL-1 beta on integrin gene expression. It is suggested that products of inflammation may affect cell behavior by differentially regulating the expression of various integrins.  相似文献   

2.
3.
Kato K  Lukas A  Chapman DC  Dhalla NS 《Life sciences》2000,67(10):1175-1183
Previous studies have shown that cardiac Na+ -K+ ATPase activity in the UM-X7.1 hamster strain is decreased at an early stage of genetic cardiomyopathy and remains depressed; however, the mechanism for this decrease is unknown. The objective of the present study was to assess whether changes in the expression of cardiac Na+-K+ ATPase subunits in control and UM-X7.1 cardiomyopathic hamsters are associated with alterations in the enzyme activity. Accordingly, we examined sarcolemmal Na+-K+ ATPase activity as well as protein content and mRNA levels for the alpha1, alpha2, alpha3 and beta1-subunit of the Na+-K+ ATPase in 250-day-old UM-X7.1 and age-matched, control Syrian hamsters; this age corresponds to the severe stage of heart failure in the UM-X7.1 hamster. Na+-K+ ATPase activity in UM-X7.1 hearts was decreased compared to controls (9.0 +/- 0.8 versus 5.6 +/- 0.8 micromol Pi/mg protein/hr). Western blot analysis revealed that the protein content of Na+-K+ ATPase alpha1- and beta1-subunits were increased to 164 +/- 27% and 146 +/- 22% in UM-X7.1 hearts respectively, whereas that of the alpha2- and alpha3-subunits were decreased to 82 +/- 5% and 69 +/- 11% of control values. The results of Northern blot analysis for mRNA levels were consistent with the protein levels; mRNA levels for the alpha1- and beta1-subunits in UM-X7.1 hearts were elevated to 165 +/- 14% and 151 +/- 10%, but the alpha2-subunit was decreased to 60 +/- 8% of the control value. We were unable to detect mRNA for the alpha3-subunit in either UM-X7. 1 or control hearts. These data suggest that the marked depression of Na+-K+ ATPase activity in UM-X7.1 cardiomyopathic hearts may be due to changes in the expression of subunits for this enzyme.  相似文献   

4.
5.
In interleukin-2 (IL-2)-induced human blood lymphocytes, the Na+/K+ pump function (assessed by ouabain-sensitive Rb+ influx), the abundance of Na+, K+-ATPase alpha1-subunit (determined by Western blotting) and the alpha1- and beta1-subunits mRNA of Na+, K+-ATPase (RT-PCR), as well as the phosphorylation of STAT5 and STAT3 family proteins and ERK1/2 kinase have been examined. A 3.5-4.0-fold increase in the expression of alpha1- and beta1-subunits mRNA of Na+, K+-ATPase was found at 24 h of IL-2 stimulation. The inhibitors of JAK3 kinase (B-42, WHI-P431) was shown to decrease both the phosphorylation of STATs and the rise in the oubain-sensitive rubidium influx as well as the increased abundance of Na+, K+-ATPase alpha1-subunit. The inhibition of the protein kinases ERK1/2 by PD98059 (20 microM) suppressed the alpha1-subunit accumulation. All the kinase inhibitors tested did not alter the intracellular content ofmonovalent cations in resting and IL-2-stimulated lymphocytes. It is concluded that MAPK and JAK/STAT signaling pathways mediate the IL-2-dependent regulation of the Na+, K+-ATPase expression during the lymphocyte transition from resting stage to proliferation.  相似文献   

6.
The present study was undertaken to determine whether altered expression of the VDCC beta-subunits in pancreatic beta-cells could play a role in the changes in beta-cell sensitivity to glucose that occur with diabetes. Application of competitive RT-PCR procedure revealed that in normal Wistar rats, LETO and prediabetic OLETF rats, the beta(2)-subunit mRNA levels were 60-200-fold greater than the levels for the beta(3)-subunit. These findings suggest that the beta(2)-subunit as well as the beta-cell type VDCC1 alpha(1)-subunit may be the predominant form of the VDCC expressed in pancreatic beta-cells. The levels of mRNA encoding the beta-subunits and the beta-cell type alpha(1)-subunit as well as insulin were significantly reduced in diabetic rats. Perfusion experiments revealed that diabetic rats showed the higher basal insulin secretion and profoundly impaired insulin secretory responses to glucose compared with non-diabetic rats. Alternatively, impaired insulin secretory responses to glucose in high dose glucose-infused rats were recovered partly with the elevation of mRNA levels of the VDCC beta(2)- and beta(3)-subunits as well as the alpha(1)-subunit by the treatment with diazoxide. Thus, considering the possibility that the most striking effect of the VDCC alpha(1) beta-subunit coexpression in pancreatic beta-cells might occur on activation kinetics like the skeletal muscle, the impairment of further activation of the VDCCs to acute glucose challenge caused by the reduced expressions of the alpha(1) beta-subunits mRNAs in type 2 diabetic animals might be at least partly associated with the alterations in beta-cell sensitivity to glucose.  相似文献   

7.
The actions of ethanol on gamma-aminobutyric acid type A (GABA(A)) receptors are still highly controversial issues but it appears that some of its pharmacological effects may depend on receptor subunit composition. Prolonged ethanol exposure produces tolerance and dependence and its withdrawal alters GABA(A) receptor subunit gene expression and function. Whereas benzodiazepines are clinically effective in ameliorating ethanol withdrawal symptoms, work in our laboratory showed that benzodiazepines also prevent, in vitro, some of the ethanol withdrawal-induced molecular and functional changes of the GABA(A) receptors. In the present work, we investigated the effects, on such changes, of the benzodiazepine receptor antagonist flumazenil that can positively modulate alpha(4)-containing receptors. We here report that flumazenil prevented both the ethanol withdrawal-induced up-regulation of the alpha(4)-subunit and the increase in its own modulatory action. In contrast, flumazenil did not inhibit ethanol withdrawal-induced decrease in alpha(1)- and delta-subunit expression as well as the corresponding decrease in the modulatory action on GABA(A) receptor function of both the alpha(1)-selective ligand zaleplon and the delta-containing receptor preferentially acting steroid allopregnanolone. These observations are the first molecular and functional evidence that show a selective inhibition by flumazenil of the up-regulation of alpha(4)-subunit expression elicited by ethanol withdrawal.  相似文献   

8.
9.
10.
Previous suggestions (Hubert, J. J., Schenk, D. B., Skelly, H., and Leffert, H. L. (1986) Biochemistry 25, 4156-4163) of tissue-specific isoforms or nonexistence of hepatic Na,K-ATPase beta 1-subunits were reevaluated by quantifying beta 1-subunit mRNA levels in quiescent and proliferating liver. RNA was extracted from caudate liver lobes of sham or 67% hepatectomized adult rats and from primary cultures of adult rat hepatocytes that simulate developmental and regenerating growth transitions. Northern blot analysis with a 32P-labeled full-length Na,K-ATPase beta 1-cDNA probe (Mercer, R. W., Schneider, J. W., Savitz, A., Emmanuel, J., Benz, T.J., and Levenson, R. (1986) Mol. Cell. Biol. 6, 3884-3890) revealed four (approximately 2.7, 2.4, 1.7-1.8, and 1.5 kilobases) low abundance mRNA species in quiescent tissue, freshly isolated hepatocytes, and cultured hepatocytes derived from lag or late stationary phase (1-2 days or 11-12 days postplating, respectively). In contrast, proliferating liver from 4 h post-67% hepatectomized rats or cultured hepatocytes in logarithmic growth phase contained levels of beta 1-subunit mRNA which exceeded quiescent levels by 4-35-fold. Membrane Na,K-ATPase activity also increased 2-3-fold during liver regeneration 12-24 h after partial hepatectomy. When proliferation in vitro was augmented by transforming growth factor-alpha, a hepatocyte mitogen, or reinitiated in late stationary phase by a change to fresh culture medium containing rat serum, beta 1-subunit mRNA expression was restimulated 4-20-fold. Parallel measurements of alpha-tubulin mRNA induction showed relatively nonsynchronous or invariant changes during hepatocyte proliferative transitions; similar results were obtained after Northern blots with a sodium pump alpha I-subunit cDNA probe. No detectable hybridization signals were observed when either rat kidney or hepatocyte RNAs from freshly isolated and cultured cells or regenerating tissues were probed for the sodium pump 3.4-kilobase mRNA beta 2-isoform. These observations suggest that enhanced hepatic beta 1-subunit gene expression is linked specifically to growth-associated increases in Na,K-ATPase activity, hepatocyte proliferation, and mitogen activation.  相似文献   

11.
Wong E  Yu WP  Yap WH  Venkatesh B  Soong TW 《Gene》2006,366(1):117-127
Extensive search for the orthologs of 10 human voltage-gated calcium channel (VGCC) alpha(1)-subunit genes in the Fugu genome sequence revealed 21 alpha(1)-subunit genes in the compact genome of Fugu. Subtype classification of the identified Fugu alpha(1) orthologs based on phylogenetic analysis, genomic organization and sequence comparison of the most divergent II/III loop and the C-terminal regions of the alpha(1)-subunits indicated extra copies of alpha(1S)-, alpha(1D)-, alpha(1F)-, alpha(1A)-, alpha(1E)-, alpha(1H)- and alpha(1G)-subunit genes. Phylogenetic analysis reveals that this is likely due to fish lineage specific alpha(1)-subunit subtype duplication. Sequence comparison shows that many of the structural features characteristic of VGCC and specific channel subtypes are also present in the Fugu alpha(1)-subunits. All the Fugu alpha(1)-subunits showed similar expression profile to that of the mammalian alpha(1)-subunits except for Fugu alpha(1S), alpha(1A), alpha(1B) and alpha(1H) which have a more widespread tissue distribution. These results indicate that Fugu, a lower vertebrate, has more extensive channel heterogeneity compared to human.  相似文献   

12.
Chondrocytes have been shown to express both in vivo and in vitro a number of integrins of the beta1-, beta3- and beta5-subfamilies (Biorheology 37 (2000) 109). Normal and v-Src-transformed chick epiphyseal chondrocytes (CEC) display different adhesion properties. While normal CEC with time in culture tends to increase their adhesion to the substrate by organizing focal adhesions and actin stress fibers, v-Src-transformed chondrocytes display a refractile morphology and disorganization of actin cytoskeleton. We wondered whether the reduced adhesion and spreading of v-Src-transformed chondrocytes could be ascribed to changes in integrin expression and/or function. Integrin expression by normal CEC is studied and compared to v-Src-transformed chick chondrocytes, using monoclonal and polyclonal antibodies to integrins alpha- and beta-chains. We show the presence of alpha1-, alpha3-, alphav-, alpha6-, beta1- and beta3-chains on CEC, with very low levels of alpha2- and alpha5-chains. Alphav chain associates with multiple beta subunits in normal and transformed chondrocytes. With the exception of alpha1- and alpha2-chains, the levels of the integrin chains analyzed are higher in transformed chondrocytes as compared with normal chondrocytes. In spite of the increased levels of integrin expression, transformed chondrocytes exhibit loss of focal adhesion and actin stress fibers and low adhesion activity on several extracellular matrix constituents. These observations raise the possibility that, in addition to its effects on global pattern of integrin expression, v-Src can influence integrin function in chondrocytes.  相似文献   

13.
14.
Integrin alpha(4)beta(1) on the surface of T lymphocytes interacts with vascular cell adhesion molecule-1 (VCAM-1) and fibronectin during migration of lymphocytes from the blood to sites of inflammation. Migrating lymphocytes actively modify their environment through a number of mechanisms including proteolysis of the extracellular matrix by matrix metalloproteinases (MMP) synthesized by the cells. In this study, expression of MMP upon alpha(4)beta(1)-mediated adhesion of leukocytes to two major ligands, the IIICS-1 domain of fibronectin and VCAM-1, has been examined. Adhesion of T lymphoblastoid Jurkat cells to the CS-1 peptide induced expression of mRNA for two MMPs, gelatinase A (MMP-2) and gelatinase B (MMP-9). As evaluated by relative RT-PCR and Northern blot analyses, the level of mRNA was upregulated about 4- to 5-fold for both MMPs compared to control cells maintained in suspension. With time, both enzymes were detected in conditioned media and inside the cells, and their identities were verified by Western blotting and gelatin zymography. Adhesion of Jurkat cells to the second major alpha(4)beta(1) ligand, VCAM-1, upregulated mRNA for MMP-2 (3.5-fold) and failed to induce expression of mRNA for MMP-9. Accordingly, only MMP-2 protein was detected in conditioned media of cells adherent to VCAM-1. Occupancy of alpha(4)beta(1) on the surface of suspended cells with soluble CS-1 peptide or VCAM-1 did not upregulate synthesis and release of MMPs. A similar pattern of induction of MMPs after adhesion to CS-1 and VCAM-1 was observed in T lymphocytes isolated from human blood. These results demonstrate that adhesion of T lymphocytes through alpha(4)beta(1) to different ligands, which bind to similar or overlapping sites in the integrin, induces intracellular events leading to distinct patterns of MMPs biosynthesis.  相似文献   

15.
16.
17.
Skeletal muscle expresses multiple isoforms of the Na(+)-K(+)-ATPase. Their expression has been shown to be differentially regulated under pathophysiological conditions. In addition, previous studies suggest possible age-dependent alterations in Na(+)-K(+) pump function. The present study tests the hypothesis that advancing age is associated with altered Na(+)-K(+)-ATPase enzyme activity and isoform-specific changes in expression of the enzyme subunits. Red and white gastrocnemius (Gast) as well as soleus muscles of male Fischer 344/Brown Norway (F-344/BN) rats at 6, 18, and 30 mo of age were examined. Na(+)-K(+)-ATPase activity, measured by K(+)-stimulated 3-O-methylfluorescein phosphatase activity, increased by approximately 50% in a mixed Gast homogenate from 30-mo-old compared with 6- and 18-mo-old rats. Advancing age was associated with markedly increased alpha(1)- and beta(1)-subunit, and decreased alpha(2)- and beta(2)-subunit in red and white Gast. In soleus, there were similar changes in expression of alpha(1)- and alpha(2)-subunits, but levels of beta(1)-subunit were unchanged. Functional Na(+)-K(+)-ATPase units, measured by [(3)H]ouabain binding, undergo muscle-type specific changes. In red Gast, high-affinity ouabain-binding sites, which are a measure of alpha(2)-isozyme, increased in 30-mo-old rats despite decreased levels of alpha(2)-subunit. In white Gast, by contrast, decreased levels of alpha(2)-subunit were accompanied by decreased high-affinity ouabain-binding sites. Finally, patterns of expression of the four myosin heavy chain (MHC) isoforms (type I, IIA, IIX, and IIB) in these muscles were similar in the three age groups examined. We conclude that, in the skeletal muscles of F-344/BN rats, advancing age is associated with muscle type-specific alterations in Na(+)-K(+)-ATPase activity and patterns of expression of alpha- and beta-subunit isoforms. These changes apparently occurred without obvious shift in muscle fiber types, since expression of MHC isoforms remained unchanged. Some of the alterations occurred between middle-age (18 mo) and senescence (30 mo), and, therefore, may be attributed to aging of skeletal muscle.  相似文献   

18.
In the first (lamina) and second (medulla) optic neuropils of Drosophila melanogaster, sodium pump subunit expression changes during the day and night, controlled by a circadian clock. We examined α-subunit expression from the intensity of immunolabeling. For the β-subunit, encoded by Nervana 2 (Nrv2), we used Nrv2-GAL4 to drive expression of GFP, and measured the resultant fluorescence in whole heads and specific optic lobe cells. All optic neuropils express the α-subunit, highest at the beginning of night in both lamina and medulla in day/night condition and the oscillation was maintained in constant darkness. This rhythm was lacking in the clock arrhythmic per0 mutant. GFP driven by Nrv2 was mostly detected in glial cells, mainly in the medulla. There, GFP expression occurs in medulla neuropil glia (MNGl), which express the clock gene per, and which closely contact the terminals of clock neurons immunoreactive to pigment dispersing factor. GFP fluorescence exhibited circadian oscillation in whole heads from Nrv2-GAL4 + UAS-S65T-GFP flies, although significant GFP oscillations were lacking in MNGl, as they were for both subunit mRNAs in whole-head homogenates. In the dissected brain tissues, however, the mRNA of the α-subunit showed a robust daily rhythm in concentration changes while changes in the β-subunit mRNA were weaker and not statistically significant. Thus in the brain, the genes for the sodium pump subunits, at least the one encoding the α-subunit, seem to be clock-controlled and the abundance of their corresponding proteins mirrors daily changes in mRNA, showing cyclical accumulation in cells.  相似文献   

19.
Soluble guanylyl cylase (sGC) has been identified for being a receptor for the gaseous transmitters nitric oxide and carbon monoxide. Currently four subunits alpha1, alpha2, beta1, and beta2 have been characterized. Heterodimers of alpha and beta-subunits as well as homodimers of the beta2-subunit are known to constitute functional sGC which use GTP to form cGMP a potent signal molecule in a multitude of second messenger cascades. Since NO-cGMP signaling plays a pivotal role in neuronal development we analyzed the maturational expression pattern of the newly characterized alpha2-subunit of sGC within the brain of Wistar rats by means of RNase protection assay and immunohistochemistry. alpha2-subunit mRNA as well as immunoreactive alpha2-protein increased during postnatal cerebral development. Topographical analysis revealed a selective high expression of the alpha2-subunit in the choroid plexus and within developing sensory systems involving the olfactory and somatosensory system of the forebrain as well as parts of the auditory and visual system within the hindbrain. In cultured cortical neurons the alpha2-subunit was localized to the cell membrane, especially along neuronal processes. During the first 11 days of postnatal development several cerebral regions showed a distinct expression of the alpha2-subunit which was not paralleled by the alpha1/beta1-subunits especially within the developing thalamo-cortical circuitries of the somatosensory system. However, at later developmental stages all three subunits became more homogenously distributed among most cerebral regions, indicating that functional alpha1/beta1 and alpha2/beta1 heterodimers of sGC could be formed. Our findings indicate that the alpha2-subunit is an essential developmentally regulated constituent of cerebral sensory systems during maturation. In addition the alpha2-subunit may serve other functions than forming a functional heterodimer of sGC during the early phases of sensory pathway refinement.  相似文献   

20.
Isolated chondrocytes form aggregates in suspension culture that maintain chondrocyte phenotype in a physiological pericellular environment. The molecular mechanisms involved in chondrocyte aggregation have not been previously identified. Using this novel suspension culture system, we performed mRNA and protein expression analysis along with immunohistochemistry for potential cell adhesion molecules and extracellular matrix integrin ligands. Inhibition of aggregation assays were performed using specific blocking agents. We found that: (i) direct cell-cell interactions were not involved in chondrocyte aggregation, (ii) chondrocytes in aggregates were surrounded by a matrix rich in collagen II and cartilage oligomeric protein (COMP), (iii) aggregation depends on a beta1-integrin, which binds a triple helical GFOGER sequence found in collagens, (iv) integrin alpha10-subunit is the most highly expressed alpha-subunit among those tested, including alpha5, in aggregating chondrocytes. Taken together, this body of evidence suggests that the main molecular interaction involved in aggregation of phenotypically stable chondrocytes is the alpha10beta1-collagen II interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号