首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent in vitro studies have revealed that a certain Mycobacterium can survive and multiply within free-living amoebae. It is believed that protozoans function as host cells for the intracellular replication and evasion of Mycobacterium spp. under harmful conditions. In this study, we describe the isolation and characterization of a bacterium naturally observed within an amoeba isolate acquired from a contact lens storage case. The bacterium multiplied within Acanthamoeba, but exerted no cytopathic effects on the amoeba during a 6-year amoebic culture. Transmission electron microscopy showed that the bacteria were randomly distributed within the cytoplasm of trophozoites and cysts of Acanthamoeba. On the basis of the results of 18S rRNA gene analysis, the amoeba was identified as A. lugdunensis. A 16S rRNA gene analysis placed this bacterium within the genus Mycobacterium. The bacterium evidenced positive reactivity for acid-fast and fluorescent acid-fast stains. The bacterium was capable of growth on the Middlebrook 7H11-Mycobacterium-specific agar. The identification and characterization of bacterial endosymbionts of free-living protozoa bears significant implications for our understanding of the ecology and the identification of other atypical mycobacterial pathogens.  相似文献   

2.
We studied the ability ofLegionella to multiply in potable water samples obtained from investigations of nosocomial legionellosis. AutochthonousLegionella multiplied in three of 14 hospital water samples after incubation at 35°C and 42°C. All three samples were from hot water tanks. Multiplication did not occur when a selected sample was filtered through a 0.45-m membrane and reinoculated with indigenousLegionella. We isolated bothLegionella pneumophila and one or more species of free-living amoebae, primarity members of theHartmannellidae, from each of these hot water tank samples. Amoebae from a total of six hot water tank samples were used for cocultivation studies withL. pneumophila. All amoebae supported multiplication ofLegionella in coculture at 35°C. Four of six isolates of amoebae supported multiplication oflegionella at 42°C, while none supported multiplication at 45°C. Gimenez staining and electron microscopy showed thatLegionella multiplied intracellularly in amoebae. Control of these amoebae in potable water may prevent colonization and multiplication ofLegionella in domestic hot water systems.  相似文献   

3.
《Journal of molecular biology》2019,431(21):4321-4344
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome–lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.  相似文献   

4.
Our knowledge of ciliate endosymbiont diversity greatly expanded over the past decades due to the development of characterization methods for uncultivable bacteria. Chlamydia-like bacteria have been described as symbionts of free-living amoebae and other phylogenetically diverse eukaryotic hosts. In the present work, a systematic survey of the bacterial diversity associated with the ciliate Euplotes octocarinatus strain Zam5b-1 was performed, using metagenomic screening as well as classical full-cycle rRNA approach, and a novel chlamydial symbiont was characterized. The metagenomic screening revealed 16S rRNA gene sequences from Polynucleobacter necessarius, three previously reported accessory symbionts, and a novel chlamydia-like bacterium. Following the full-cycle rRNA approach, we obtained the full-length 16S rRNA gene sequence of this chlamydia-like bacterium and developed probes for diagnostic fluorescence in situ hybridizations. The phylogenetic analysis of the 16S rRNA gene sequences unambiguously places the new bacterium in the family Rhabdochlamydiaceae. This is the first report of chlamydia-like bacterium being found in Euplotes. Based on the obtained data, the bacterium is proposed as a new candidate genus and species: “Candidatus Euplotechlamydia quinta.”  相似文献   

5.
Legionella pneumophila (Lp) is the etiological agent responsible for Legionnaires’ disease, a potentially fatal pulmonary infection. Lp lives and multiplies inside protozoa in a variety of natural and man-made water systems prior to human infection. Fraquil, a defined freshwater medium, was used as a highly reproducible medium to study the behaviour of Lp in water. Adopting a reductionist approach, Fraquil was used to study the impact of temperature, pH and trace metal levels on the survival and subsequent intracellular multiplication of Lp in Acanthamoeba castellanii, a freshwater protozoan and a natural host of Legionella. We show that temperature has a significant impact on the short- and long-term survival of Lp, but that the bacterium retains intracellular multiplication potential for over six months in Fraquil. Moreover, incubation in Fraquil at pH 4.0 resulted in a rapid decline in colony forming units, but was not detrimental to intracellular multiplication. In contrast, variations in trace metal concentrations had no impact on either survival or intracellular multiplication in amoeba. Our data show that Lp is a resilient bacterium in the water environment, remaining infectious to host cells after six months under the nutrient-deprived conditions of Fraquil.  相似文献   

6.
Protozoans are gaining recognition as environmental hosts for a variety of waterborne pathogens. We compared the growth of Mycobacterium avium, a human pathogen associated with domestic water supplies, in coculture with the free-living amoeba Acanthamoeba polyphaga with the growth of M. avium when it was separated from amoebae by a 0.1-μm-pore-size polycarbonate membrane (in a parachamber). Although viable mycobacteria were observed within amoebal vacuoles, there was no significant difference between bacterial growth in coculture and bacterial growth in the parachamber. This suggests that M. avium is able to grow saprozoically on products secreted by the amoebae. In contrast, Legionella pneumophila, a well-studied intracellular parasite of amoebae, multiplied only in coculture. A comparison of amoebae infected with L. pneumophila and amoebae infected with M. avium by electron microscopy demonstrated that there were striking differences in the locations of the bacteria within amoebal cysts. While L. pneumophila resided within the cysts, M. avium was found within the outer walls of the double-walled cysts of A. polyphaga. These locations may provide a reservoir for the bacteria when environmental conditions become unfavorable.  相似文献   

7.
Vibrio parahaemolyticus is a food-borne pathogen that naturally inhabits both marine and estuarine environments. Free-living protozoa exist in similar aquatic environments and function to control bacterial numbers by grazing on free-living bacteria. Protozoa also play an important role in the survival and spread of some pathogenic species of bacteria. We investigated the interaction between the protozoan Acanthamoeba castellanii and the bacterium Vibrio parahaemolyticus. We found that Acanthamoeba castellanii does not prey on Vibrio parahaemolyticus but instead secretes a factor that promotes the survival of Vibrio parahaemolyticus in coculture. These studies suggest that protozoa may provide a survival advantage to an extracellular pathogen in the environment.  相似文献   

8.
Waterborne transmission of the oocyst stage of Toxoplasma gondii can cause outbreaks of clinical toxoplasmosis in humans and infection of marine mammals. In water-related environments and soil, free-living amoebae are considered potential carriers of various pathogens, but knowledge on interactions with parasitic protozoa remains elusive. In the present study, we assessed whether the free-living Acanthamoebacastellanii, due to its phagocytic activity, can interact with T. gondii oocysts. We report that amoebae can internalize T. gondii oocysts by active uptake. Intracellular oocysts in amoebae rarely underwent phagocytic lysis, retained viability and established infection in mice. Interaction of T. gondii with amoebae did not reduce the infectivity and pathogenicity of oocysts even after prolonged co-cultivation. Our results show that uptake of oocysts by A. castellanii does not restrain the transmission of T. gondii in a murine infection model.  相似文献   

9.
Legionella pneumophila is an intracellular pathogen that causes a severe pneumonia called Legionnaires' disease that is often fatal when not promptly diagnosed and treated. Legionella parasitize aquatic protozoa with which it co-evolved over an evolutionary long time. The close relationship between hosts and pathogens, their co-evolution, led to molecular interactions such as the exchange of genetic material through horizontal gene transfer (HGT). Genome sequencing of L. pneumophila and of the entire genus Legionella that comprises over 60 species revealed that Legionellae have co-opted genes and thus cellular functions from their eukaryotic hosts to a surprisingly high extent. Acquisition and loss of these eukaryotic-like genes and domains is an on-going process underlining the highly dynamic nature of the Legionella genomes. Although the large amount and diversity of HGT in Legionella seems to be unique in the prokaryotic world the analyses of more and more genomes from environmental organisms and symbionts of amoeba revealed that such genetic exchanges occur among all amoeba associated bacteria and also among the different microorganisms that infect amoeba. This dynamic reshuffling and gene-acquisition has led to the emergence of Legionella as human pathogen and may lead to the emergence of new human pathogens from the environment.  相似文献   

10.
The review is devoted to the general and molecular ecology of bacteria of the genusLegionella in natural and anthropogenic environments. Invasion of amoebae and infusoria by legionellae and their replication in these protozoa can be considered to be a preadaptation for invasion of the human immune system. Symbiosis of bacteria and protozoa as a promising model of cellular microbiology and the conception of bacterial ecological niches are discussed in relation to the low fidelity of most bacterial species to their habitats (biotopes). The necessity of elaboration of a similar conception for microbial consortia and associations is emphasized.  相似文献   

11.
C H King  E B Shotts  Jr  R E Wooley    K G Porter 《Applied microbiology》1988,54(12):3023-3033
The susceptibility of coliform bacteria and bacterial pathogens to free chlorine residuals was determined before and after incubation with amoebae and ciliate protozoa. Viability of bacteria was quantified to determine their resistance to free chlorine residuals when ingested by laboratory strains of Acanthamoeba castellanii and Tetrahymena pyriformis. Cocultures of bacteria and protozoa were incubated to facilitate ingestion of the bacteria and then were chlorinated, neutralized, and sonicated to release intracellular bacteria. Qualitative susceptibility of protozoan strains to free chlorine was also assessed. Protozoa were shown to survive and grow after exposure to levels of free chlorine residuals that killed free-living bacteria. Ingested coliforms Escherichia coli, Citrobacter freundii, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, and Klebsiella oxytoca and bacterial pathogens Salmonella typhimurium, Yersinia enterocolitica, Shigella sonnei, Legionella gormanii, and Campylobacter jejuni had increased resistance to free chlorine residuals. Bacteria could be cultured from within treated protozoans well after the time required for 99% inactivation of free-living cells. All bacterial pathogens were greater than 50-fold more resistant to free chlorine when ingested by T. pyriformis. Escherichia coli ingested by a Cyclidium sp., a ciliate isolated from a drinking water reservoir, were also shown to be more resistant to free chlorine. The mechanism that increased resistance appeared to be survival within protozoan cells. This study indicates that bacteria can survive ingestion by protozoa. This bacterium-protozoan association provides bacteria with increased resistance to free chlorine residuals which can lead to persistence of bacteria in chlorine-treated water. We propose that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious bacteria in dilute and inhospitable aquatic environments.  相似文献   

12.
Free-living amoebae in water are hosts to many bacterial species living in such an environment. Such an association enables bacteria to select virulence factors and survive in adverse conditions. Waterborne mycobacteria (WBM) are important sources of community- and hospital-acquired outbreaks of nontuberculosis mycobacterial infections. However, the interactions between WBM and free-living amoebae in water have been demonstrated for only few Mycobacterium spp. We investigated the ability of a number (n = 26) of Mycobacterium spp. to survive in the trophozoites and cysts of Acanthamoeba polyphaga. All the species tested entered the trophozoites of A. polyphaga and survived at this location over a period of 5 days. Moreover, all Mycobacterium spp. survived inside cysts for a period of 15 days. Intracellular Mycobacterium spp. within amoeba cysts survived when exposed to free chlorine (15 mg/liter) for 24 h. These data document the interactions between free-living amoebae and the majority of waterborne Mycobacterium spp. Further studies are required to examine the effects of various germicidal agents on the survival of WBM in an aquatic environment.  相似文献   

13.
The introduction and survival of zoonotic bacterial pathogens in poultry farming have been linked to bacterial association with free-living protozoa. To date, however, no information is available on the persistence of protozoan communities in these environments across consecutive rearing cycles and how it is affected by farm- and habitat-specific characteristics and management strategies. We therefore investigated the spatial and temporal dynamics of free-living protozoa in three habitats (pipeline, water, and miscellaneous samples) in three commercial poultry houses across three rearing cycles by using the molecular fingerprinting technique denaturing gradient gel electrophoresis (DGGE). Our study provides strong evidence for the long-term (ca. 6-month) persistence of protozoa in broiler houses across consecutive rearing cycles. Various free-living protozoa (flagellates, ciliates, and amoebae), including known vectors of bacterial pathogens, were observed during the down periods in between rearing cycles. In addition, multivariate analysis and variation partitioning showed that the protozoan community structure in the broiler houses showed almost no change across rearing cycles and remained highly habitat and farm specific. Unlike in natural environments, protozoan communities inside broiler houses are therefore not seasonal. Our results imply that currently used biosecurity measures (cleaning and disinfection) applied during the down periods are not effective against many protozoans and therefore cannot prevent potential cross-contamination of bacterial pathogens via free-living protozoa between rearing cycles.  相似文献   

14.
Currently, the investigation of Legionella ecology falls into two distinct areas of research activity: (1) that Legionella multiply within water sources by parasitizing amoebic or ciliate hosts or (2) that Legionella grows extracellularly within biofilms. Less focus has been given to the overlaps that may occur between these two areas or the likelihood that Legionella employs multiple survival strategies to persist in water sources. It is likely that Legionella interacts with protozoa, bacteria, algae, fungi, etc., and biofilm components in a more complex fashion than multiplication or death due to the presence or absence of single components of these complex microbial systems. This paper addresses gaps that exist in the understanding of Legionella ecology and serves to pinpoint areas of future research. To assume that only one other class of organism is important to Legionella ecology may limit our understanding of how this bacterium proliferates in heated water sources and also limit our strategies for its control in the built environment.  相似文献   

15.
Previous studies using a murine model of coinhalation of Legionella pneumophila and Hartmannella vermiformis have shown a significantly enhanced intrapulmonary growth of L. pneumophila in comparison to inhalation of legionellae alone (J. Brieland, M. McClain, L. Heath, C. Chrisp, G. Huffnagle, M. LeGendre, M. Hurley, J. Fantone, and C. Engleberg, Infect. Immun. 64:2449–2456, 1996). In this study, we introduce an in vitro coculture model of legionellae, Mono Mac 6 cells (MM6) and Acanthamoeba castellanii, using a cell culture chamber system which separates both cell types by a microporous polycarbonate membrane impervious to bacteria, amoebae, and human cells. Whereas L. pneumophila has shown a maximal 4-log-unit multiplication within MM6, which could not be further increased by coculture with Acanthamoeba castellanii, significantly enhanced replication of L. gormanii, L. micdadei, L. steigerwaltii, L. longbeachae, and L. dumoffii was seen after coculture with amoebae. This effect was seen only with uninfected amoebae, not with Legionella-infected amoebae. The supporting effect for intracellular multiplication in MM6 could be reproduced in part by addition of a cell-free coculture supernatant obtained from a coincubation experiment with uninfected A. castellanii and Legionella-infected MM6, suggesting that amoeba-derived effector molecules are involved in this phenomenon. This coculture model allows investigations of molecular and biochemical mechanisms which are responsible for the enhancement of intracellular multiplication of legionellae in monocytic cells after interaction with amoebae.  相似文献   

16.
Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae.  相似文献   

17.
Diverse species of Legionella and Legionella‐like amoebal pathogens (LLAPs) have been identified as intracellular bacteria in many amoeboid protists. There are, however, other amoeboid groups such as testate amoeba for which we know little about their potential to host such bacteria. In this study, we assessed the occurrence and diversity of Legionella spp. in cultures and environmental isolates of freshwater arcellinid testate amoebae species, Arcella hemispherica, Arcella intermedia, and Arcella vulgaris, via 16S rRNA gene sequence analyses and fluorescent in situ hybridization (FISH). Analysis of the 16S rRNA gene sequences indicated that A. hemispherica, A. intermedia, and A. vulgaris host Legionella‐like bacteria with 94–98% identity to other Legionella spp. based on NCBI BLAST search. Phylogenetic analysis placed Legionella‐like Arcella‐associated bacteria (LLAB) in three different clusters within a tree containing all other members of Legionella and LLAPs. The intracellular localization of the Legionella within Arcella hosts was confirmed using FISH with a Legionella‐specific probe. This study demonstrates that the host range of Legionella and Legionella‐like bacteria in the Amoebozoa extends beyond members of “naked” amoebae species, with members of the testate amoebae potentially serving an ecological role in the dispersal, protection, and replication of Legionella spp. in natural environments.  相似文献   

18.
Since the discovery that Legionella pneumophila can survive and grow within free-living amoebae, there has been an increasing number of microbial species shown to have similar relationships. These include many bacterial species, fungi, other protozoa (e.g. Cryptosporidium) and viruses. Among bacteria, mycobacteria are of particular importance because of their role in human and animal infections. This review will consider the progress made in understanding the relationships between mycobacteria and amoebae, and their consequences in terms of ecology and epidemiology.  相似文献   

19.
The new bacterial strain with antimycobacterial activity has been isolated from the midgut of Dendrobaena veneta (Annelida). Biochemical and molecular characterization of isolates from 18 individuals identified all as Raoultella ornithinolytica genus with 99% similarity. The bacterium is a possible symbiont of the earthworm D. veneta. The isolated microorganism has shown the activity against four strains of fast-growing mycobacteria: Mycobacterium butiricum, Mycobacterium jucho, Mycobacterium smegmatis and Mycobacterium phlei. The multiplication of the gut bacterium on plates with Sauton medium containing mycobacteria has caused a lytic effect. After the incubation of the cell free extract prepared from the gut bacterium with four strains of mycobacteria in liquid Sauton medium, the cells of all tested strains were deformed and divided to small oval forms and sometimes created long filaments. The effect was observed by the use of light, transmission and scanning microscopy. Viability of all examined species of mycobacteria was significantly decreased. The antimycobacterial effect was probably the result of the antibiotic action produced by the gut bacterium of the earthworm. The application of ultrafiltration procedure allowed to demonstrate that antimicrobial substance with strong antimycobacterial activity from bacterial culture supernatant, is a protein with the molecular mass above 100 kDa.  相似文献   

20.
Several species of Legionella cause Legionnaires’ disease (LD). Infection may occur through inhalation of Legionella or amoebal vesicles. The reservoirs of Legionella are water, soil, potting soil and compost. Some species of free-living amoebae (FLA) that are naturally present in water and soil were described as hosts for Legionella. This study aimed to understand whether or not the composting facilities could be sources of community-acquired Legionella infections after development of bioaerosols containing Legionella or FLA. We looked for the presence of Legionella (by co-culture) and FLA (by culture) in composts and bioaerosols collected at four composting facilities located in southern Switzerland. We investigated the association between the presence of Legionella and compost and air parameters and presence of FLA. Legionella spp. (including L. pneumophila) were detected in 69.3% (61/88) of the composts and FLA (mainly Acanthamoeba, Vermamoeba, Naegleria and Stenamoeba) in 92.0% (81/88). L. pneumophila and L. bozemanii were most frequently isolated. FLA as potential host for Legionella spp. were isolated from 40.9% (36/88) of the composts in all facilities. In Legionella-positive samples the temperature of compost was significantly lower (P = 0.012) than in Legionella-negative samples. Of 47 bioaerosol samples, 19.1% (9/47) were positive for FLA and 10.6% (5/47) for L. pneumophila. Composts (62.8%) were positive for Legionella and FLA contemporaneously, but both microorganisms were never detected simultaneously in bioaerosols. Compost can release bioaerosol containing FLA or Legionella and could represent a source of infection of community-acquired Legionella infections for workers and nearby residents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号