首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first replicating DNA fragment (BamHI-7) of the Bacillus subtilis chromosome contains two promoters for a rRNA operon. A map of restriction enzyme cleavage sites of the region of replication origin suggests the presence of a second rRNA operon in this region. Hybridization of rRNA genes (rDNA) with DNA fragments derived from the origin region by treatment with various enzymes clearly revealed two rRNA operons in this region, one at the B7-B3 junction and the other at the B5-B6 junction. The restriction enzyme cleavage sites surrounding the rRNA operons show that the operon at the B5-B6 junction corresponds to the rrnA operon. A novel operon at the B7-B3 junction was termed rrnO. Transformation by density-labeled fragments of the origin region showed that the first replicating marker, guaA, is located in the B3 fragment. From these results, a map was constructed for the first time to correlate the genetic markers with the physical structure of the replication origin region of the B. subtilis chromosome. The role of the rrnO operon in regulating the initiation of chromosomal replication is discussed, based on the fact that the promoter of the rrnO operon suppresses the replication of the plasmid carrying the promoter.  相似文献   

2.
3.
4.
Instability of rRNA operons in Bacillus subtilis.   总被引:12,自引:7,他引:5       下载免费PDF全文
Many laboratory strains of Bacillus subtilis contain 9 rather than 10 rRNA operons due to deletions occurring within the rrnJ-rrnW or rrnI-rrnH-rrnG gene cluster. These operons are members of two sets of closely spaced clusters located in the cysA-aroI region. Analysis of rescued DNA from integrants with insertions into rrnG and rrnH indicated that these tandemly arranged operons allowed frequent deletions of an rrn operon equivalent. These events may arise spontaneously by intrachromosomal recombination or by simultaneous double crossovers with a multimeric integrative plasmid.  相似文献   

5.
Approximately 10,000 nucleotides were sequenced in the oriC region of the Bacillus subtilis chromosome. The first replicating DNA strands are hybridized with a SalI-EcoRI fragment (nucleotide #1206-2954) in one direction (left to right) and an EcoRI-PstI fragment (#2949-4233) in the other. Seven open reading frames (ORF) accompanied with Shine-Dalgarno (SD) sequences were identified. ORF638 and ORF821 were identified as gyrB and gyrA genes respectively based on genetic evidences and amino acid sequence data. Comparison of amino acid sequences revealed that ORF44, ORF446, ORF378 and ORF323 are homologous with rpmH, dnaA, dnaN and recF of Escherichia coli, respectively. Thus, the organization of the ORFs from ORF44 to ORF638 resembles the organization of genes in the rpmH-gyrB region of the E. coli chromosome. Two non-coding regions characteristic for oriC signals were found near the site of initiation of the first replicating DNA. They are composed of repeating sequences whose consensus sequence TTAT(C/A)CACA is identical to that of 4 repeating sequences in the oriC of E. coli.  相似文献   

6.
7.
A gene homologous to the Escherichia coli dnaA gene and two flanking 'regulatory' regions which contain nine and four DnaA-boxes respectively, are located in the replication origin region of the Bacillus subtilis chromosome. Attempts to isolate an autonomously replicating fragment from these 'regulatory' regions in order to identify oriC have been unsuccessful because the DnaA-box-containing regions strongly inhibited plasmid transformation particularly when inserted into a high-copy number plasmid pUB110. Using two plasmids differing in copy number, the two regions were subdivided into three regions, A, B and C, each containing five, four and four DnaA-boxes respectively, which differed in level of inhibition of transformation. Region C is downstream of the 'dnaA' gene and inhibits transformation in high-copy but not in low-copy number plasmids. When a part of the DnaA-boxes was deleted from the incompatible plasmids, they became transformable and produced slow-growing transformants in which the initiation frequency of chromosomal replication was selectively reduced. Fast-growing revertants were found containing the same number of plasmids as the parent but with single base changes in the DnaA-boxes. These mutations were in the most highly conserved bases of the DnaA-box sequence. This indicates that a sequence-specific interaction of the DnaA-box, probably with the B. subtilis DnaA protein is responsible for the observed incompatibility and thus appears to be involved in control of initiation frequency of the chromosomal replication.  相似文献   

8.
Bidirectional chromosome replication in Bacillus subtilis 168.   总被引:21,自引:16,他引:5       下载免费PDF全文
Density transfer analysis of deoxyribonucleic acid from Bacillus subtilis 168 thy spores germinating in 5-bromouracil medium shows the order of replication of genetic markers to be: purA16, cysA14, sacA, ctrA, (narB, arol), dal, (hisA1, purB6), (tre-12, thr-5), (argA, aroG, argC4), (metC, leu-8, pheA), (ura-1, aroD), lys-1, (trpC, metB, ilvA, citB, citK, gltA). The precise order of transfer of markers within parentheses could not be determined in these experiments. Taken together with new PBS1 transduction data presented here and in the accompanying paper of J. Lepesant-Kejzlarová, J.-A. Lepesant, J. Walle, A. Billaut, and R. Dedonder (1975), the results can be resolved in terms of a symmetric, fully bidirectional mode of chromosome replication with a replication origin close to the purA16 marker and a terminus in the region of the gltA, citK loci, diametrically opposed to the origin. A new genetic map of the B. subtilis 168 chromosome is presented.  相似文献   

9.
Genes and their organization are conserved in the replication origin region of the bacterial chromosome. To determine the extent of the conserved region in Gram-positive and Gram-negative bacteria, which diverged 1.2 billion years ago, we have further sequenced the region upstream from the dnaA genes in Bacillus subtilis and Pseudomonas putida. Fifteen open reading frames (ORFs) and 11 ORFs were identified in the 13.6 kb and the 9.8 kb fragments in B. subtilis and P. putida, respectively. Eight consecutive P. putida genes, except for one small ORF (homologous to gene 9K of Escherichia coli) in between, are homologous in sequence and relative locations to genes in B. subtilis. Altogether, 12 genes and their organization are conserved in B. subtilis and P. putida in the origin region. We found that the conserved region terminated on one side after the orf290 in P. putida (orf282 in B. subtilis). In the B. subtilis chromosome, five additional ORFs were found in between the conserved genes, suggesting that they are added after Gram-positive bacteria were diverged from the Gram-negative bacteria. One of the ORFs is a duplicate of the conserved gene. The third non-translatable region containing multiple repeats of DnaA-box (second in the case of P. putida) was found flanking gidA in both organisms. This result shows clearly that E. coli oriC and flanking genes gidA and gidB have been translocated by the inversion of some 40 kb fragment.  相似文献   

10.
P Gottlieb  G LaFauci  R Rudner 《Gene》1985,33(3):259-268
Deletions and additions of rRNA gene sets in Bacillus subtilis were observed by Southern hybridizations using cloned radiolabeled rDNA sequences. Of the ten rRNA gene sets found in B. subtilis 168M or NCTC3610, one was deleted in strains possessing the leuB1, ilvC1, argA2 and pheA1 mutations. Among EcoRI restriction fragments of genomic DNA products, a 2.9-kb 23S rRNA homolog was missing. In HindIII digest, both 5.5- and 5.1-kb hybrid bands were lost with 16S and 23S probes, respectively. Similarly, genomic DNAs digested with SmaI showed the absence of both 2.1- and 2.0-kb fragments that hybridized to 16S and 5S sequences, respectively, in wild-type genomes. In contrast, B. subtilis strain 166 and its derivatives displayed a gain of a 3.3-kb HindIII fragment homologous to 16S rRNA. Transforming the ilvC1 and leuB1 mutations into new genetic backgrounds revealed in some clones the concomitant introduction of the ribosomal defect. Transformations with the slightly heterologous donor DNA from strain W23 yielded some Leu+ and Arg+ transformants with altered hybridization patterns when probed with cloned sequences. We propose that the deletion of the rRNA operon occurred in the ilv-leu gene cluster of the B. subtilis genome as a result of unequal recombination between redundant sequences.  相似文献   

11.
The terminus regions of the chromosomes of three strains of Bacillus subtilis 168 were radioactively labelled by supplying [3H]thymine towards the end of a round of replication. These strains lacked or contained the prophage SP beta c2. Following restriction endonuclease digestion of the purified DNA and fluorography, an SP beta c2-related perturbation of the terminus-labelling profile was observed, which was completely consistent with the previously suggested existence of an impediment to replication fork movement (terC) within a BamHI 24.8 X 10(3) base fragment (Weiss & Wake, 1983). The present data suggest that terC is located within the 11.4 X 10(3) base BamHI + SalI double-digest portion of this BamHI fragment.  相似文献   

12.
Asymmetric bidirectional replication of Bacillus subtilis chromosome   总被引:20,自引:0,他引:20  
H Hara  H Yoshikawa 《Nature: New biology》1973,244(137):200-203
  相似文献   

13.
Sequence analysis of cloned rescued DNA fragments from a Bacillus subtilis strain with an inserted recombinant plasmid in ribosomal operon rrnE revealed the presence of two tRNA genes for Met and Asp at the 3' end of the operon. Probing chromosomal DNA from a strain carrying a plasmid inserted in rrnD with a fragment containing the genetically unassigned cluster of 16 tRNA genes revealed that the cluster is located immediately following the rrnD operon. Our findings show that all 10 rrn operons in B. subtilis are associated with tRNA gene clusters.  相似文献   

14.
15.
Chromosomal DNAs from a number of strains derived from Bacillus subtilis 168 were digested with restriction endonucleases NotI or SfiI, and the locations of chromosomal alterations were compared with the recently constructed standard NotI-SfiI restriction map (M. Itaya and T. Tanaka, J. Mol. Biol. 220:631-648, 1991). In general, the chromosome structure of B. subtilis 168 was found to be stable, as expected from the genetic stability of this species. DNA alterations, typically deletions, are formed in three limited loci on the chromosome. One of these alterations was characterized as a spontaneous deletion formed between rrn operons, and another occurred as a result of prophage SP beta excision. I found that oriC and terC are not located on precisely opposite sides of the chromosome. Replication in the counter clockwise direction was 196 kb longer than replication in the clockwise direction. The characteristic of length difference is not changed by deletion formation.  相似文献   

16.
DNA replication occurs at discrete sites in the cell. To gain insight into the spatial and temporal organization of the Bacillus subtilis replication cycle, we simultaneously visualized replication origins and the replication machinery (replisomes) inside live cells. We found that the origin of replication is positioned near midcell prior to replication. After initiation, the replisome colocalizes with the origin, confirming that replication initiates near midcell. The replisome remains near midcell after duplicated origins separate. Artificially mispositioning the origin region leads to mislocalization of the replisome indicating that the location of the origin at the time of initiation establishes the position of the replisome. Time-lapse microscopy revealed that a single replisome focus reversibly splits into two closely spaced foci every few seconds in many cells, including cells that recently initiated replication. Thus, sister replication forks are likely not intimately associated with each other throughout the replication cycle. Fork dynamics persisted when replication elongation was halted, and is thus independent of the relative movement of DNA through the replisome. Our results provide new insights into how the replisome is positioned in the cell and refine our current understanding of the spatial and temporal events of the B. subtilis replication cycle.  相似文献   

17.
The sequence of 1267 nucleotides spanning the replication terminus, terC, of the Bacillus subtilis 168 chromosome has been determined. The site of arrest of the clockwise fork, which defines terC, has been localized to a 30-nucleotide portion (approximately) within this sequence. The arrest site occurs in an A + T-rich region between two open reading frames and very close to one of two imperfect inverted repeats (47-48 nucleotides each) which are separated by 59 nucleotides. The closeness of approach of the arrested clockwise fork to the first imperfect inverted repeat encountered in this region raises the possibility of a role for the inverted repeats in the mechanism of fork arrest.  相似文献   

18.
The origin of replication of Bacillus subtilis 168 trp thy dna-1 (temperature-sensitive initiation mutant) was labeled with [3H]thymidine. Analysis of labeled cells by autoradiography revealed that most of the radioactivity was associated with cell pole areas. To label the terminus, cells that had initiated were treated with chloramphenicol to inhibit cell growth and division but to allow continued DNA synthesis. These cells were then labeled with [3H]thymidine at a time when chromosome replication was nearly complete. The distribution of radioactivity was similar to that observed in origin-labeled cells. In contrast, exponentially growing cells that were labeled for a brief time at the permissive temperature showed a random distribution of radioactivity. These data indicate that the origin and terminus of replication are located at cell poles.  相似文献   

19.
The Bacillus subtilis 168 chromosome is known to contain at least six DNA replication terminators in the terminus region of the chromosome. By using a degenerate DNA probe for the consensus terminator sequence and low-stringency hybridization conditions, several additional minor hybridizing bands were identified. DNA corresponding to the most intense of these bands was cloned and characterized. Although localized in the terminus region, it could not bind RTP and possibly represents a degenerate terminator. A search of the SubtiList database identified an additional terminator sequence in the terminus region, near glnA. It was shown to bind RTP and to function in blocking replication fork movement in a polar manner. Its orientation conformed to the replication fork trap arrangement of the other terminators. The low-stringency hybridization experiments failed to identify any terminus region-type terminators in the region of the chromosome where postinitiation control sequences (STer sites) are known to reside. The two most likely terminators in STer site regions, in terms of sequence similarity to terminus region terminators, were identified through sequence searching. They were synthesized and were found not to bind RTP under conditions that allowed binding to terminus region terminators. Neither did they elicit fork arrest, when present in a plasmid, under stringent conditions. It is concluded that the STer site terminators, at least the first two to the left of oriC, do not have the typical consensus A+B site makeup of terminus region terminators.  相似文献   

20.
We describe the use of time-lapse fluorescence microscopy to visualize the movement of the DNA replication origin and terminus regions on the Bacillus subtilis chromosome during the course of the cell cycle. The origin and terminus regions were tagged with a cassette of tandem lac operator repeats and visualized through the use of a fusion of the green fluorescent protein to the LacI repressor. We have discovered that origin regions abruptly move apart towards the cell poles during a brief interval of the cell cycle. This movement was also seen in the absence of cell wall growth and in the absence of the product of the parB homologue spo0J . The origin regions moved apart an average distance of 1.4 μm in an 11 min period of abrupt movement, representing an average velocity of 0.17 μm min−1. and reaching a maximum velocity of greater than 0.27 μm min−1. The terminus region also exhibited a striking pattern of movement but not as far or a rapid as the origin region. These results provide evidence for a mitotic-like motor that is responsible for segregation of the origin regions of the chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号