首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal dominant cerebellar ataxias (ADCA) are a clinically heterogeneous group of neurodegenerative disorders caused by unstable CAG repeat expansions encoding polyglutamine tracts. Five spinocerebellar ataxia genes (SCA1, SCA2, SCA3, SCA6 and SCA7) and another related dominant ataxia gene (DRPLA) have been cloned, allowing the genetic classification of these disorders. We present here the molecular analysis of 87 unrelated familial and 60 sporadic Spanish cases of spinocerebellar ataxia. For ADCA cases 15% were SCA2, 15% SCA3, 6% SCA1, 3% SCA7, 1% SCA6 and 1% DRPLA, an extremely rare mutation in Caucasoid populations. About 58% of ADCA cases remained genetically unclassified. All the SCA1 cases belong to the same geographical area and share a common haplotype for the SCA1 mutation. The expanded alleles ranged from 41 to 59 repeats for SCA1, 17 to 29 for SCA2, 67 to 77 for SCA3, and 38 to 113 for SCA7. One SCA6 case had 25 repeats and one DRPLA case had 63 repeats. The highest CAG repeat variation in meiotic transmission of expanded alleles was detected in SCA7, this being of +67 units in one paternal transmission and giving rise to a 113 CAG repeat allele in a patient who died at 3 years of age. Meiotic transmissions have also shown a tendency to more frequent paternal transmission of expanded alleles in SCA1 and maternal in SCA7. All SCA1 and SCA2 expanded alleles analyzed consisted of pure CAG repeats, whereas normal alleles were interrupted by 1–2 CAT trinucleotides in SCA1, except for three alleles of 6, 14 and 21 CAG repeats, and by 1–3 CAA trinucleotides in SCA2. No SCA or DRPLA mutations were detected in the 60 sporadic cases of spinocerebellar ataxia, but one late onset patient was identified as a recessive form due to GAA-repeat expansions in the Friedreich’s ataxia gene. Received: 6 January 1999 / Accepted: 18 March 1999  相似文献   

2.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

3.
Spinocerebellar ataxia 7 (SCA7) is a progressive autosomal dominant neurodegenerative disorder characterized clinically by cerebellar ataxia associated with progressive macular dystrophy. The disease affects primarily the cerebellum and the retina, but also many other CNS structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat encoding a polyglutamine tract in the corresponding protein, ataxin-7. Normal SCA7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36-306 CAG repeats. SCA7 has a number of features in common with other diseases with polyglutamine expansions: (i) the appearance of clinical symptoms above a threshold number of CAG repeats (>35); (ii) a correlation between the size of the expansion and the rate of progression of the disease: the larger the repeat, the faster the progression; (iii) instability of the repeat sequence (approximately 12 CAG/transmission) that accounts for the marked anticipation of approximately 20 years/generation. The CAG repeat sequence is particularly unstable and de novo mutations can occur during paternal transmissions of intermediate size alleles (28-35 CAG repeats). This can explain the persistence of the disease in spite of the anticipation that should have resulted in its extinction.  相似文献   

4.
The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats.  相似文献   

5.
Expansion of CTG/CAG trinucleotide repeats has been shown to cause a number of autosomal dominant cerebellar ataxias (ADCA) such as SCA1, SCA2, SCA3/ MJD, SCA6, SCA7, SCA8 and DRPLA. There is a wide variation in the clinical phenotype and prevalence of these ataxias in different populations. An analysis of ataxias in 42 Indian families indicates that SCA2 is the most frequent amongst all the ADCAs we have studied. In the SCA2 families, together with an intergenerational increase in repeat size, a horizontal increase with the birth order of the offspring was also observed, indicating an important role for parental age in repeat instability. This was strengthened by the detection of a pair of dizygotic twins with expanded alleles showing the same repeat number. Haplotype analysis indicates the presence of a common founder chromosome for the expanded allele in the Indian population. Polymorphism of CAG repeats in 135 normal individuals at the SCA loci studied showed similarity to the Caucasian population but was significantly different from the Japanese population.  相似文献   

6.
CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called "dynamic mutation" diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.  相似文献   

7.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by cerebellar ataxia and pyramidal signs associated in varying degrees with a dystonic-rigid extrapyramidal syndrome or peripheral amyotrophy. Unstable CAG trinucleotide repeat expansion in the MJD gene on the long arm of chromosome 14 has been identified as the pathological mutation for MJD. While investigating the distribution of CAG repeat lengths of the MJD gene in Taiwan’s population, we have identified 18 MJD-affected patients and 12 at-risk individuals in seven families. In addition, we have analyzed the range of CAG repeat lengths in 96 control individuals. The CAG repeat number ranged from 13 to 44 in the controls and 72–85 in the affected and at- risk individuals. Our results indicated that the CAG repeat number was inversely correlated with the age of onset. The differences in CAG repeat length between parent and child and between siblings are greater with paternal transmission than maternal transmission. Our data show a tendency towards the phenomenon of anticipation in the MJD families but do not support unidirectional expansion of CAG repeats during transmission. We also demonstrated that PCR amplification of the CAG repeats in the MJD gene from villous DNA was possible and might prove useful as a diagnostic tool for affected families in the future. Received: 4 December 1996 / Accepted: 5 March 1997  相似文献   

8.
Two families with autosomal dominant cerebellar ataxia with pigmentary macular dystrophy (ADCA type II) were investigated. Analysis of 23 parent-child couples demonstrated the existence of marked anticipation, greater in paternal than in maternal transmissions, with earlier age at onset and a more rapid clinical course in successive generations. Clinical analysis revealed the presence of a great variability in age at onset, initial symptom, and associated signs, confirming the characteristic clinical heterogeneity of ADCA type II. The gene for ADCA type II previously was mapped to the spinocerebellar ataxia 7 (SCA7) locus on chromosome 3p12-p21.1. Linkage analysis of the two new families of different geographic origin confirmed the characteristic genetic homogeneity of ADCA type II, distinguishing it from ADCA type I. Haplotype analysis permitted refinement of the SCA7 region to the 5-cM interval between markers D3S1312 and D3S1600 on chromosome 3p12-p13. Eighteen sequence-tagged sites were used for the construction of an integrated map of the candidate region, based on a YACs contig. The entire candidate region is contained in a single nonchimeric YAC of 660 kb. The probable involvement of a CAG trinucleotide expansion, suggested by previous studies, should greatly facilitate the identification of the gene for ADCA type II.  相似文献   

9.
A highly polymorphic CAG repeat locus, ERDA1, was recently described on human chromosome 17q21.3, with alleles as large as 50-90 repeats and without any disease association in the general population. We have studied allelic distribution at this locus in five human populations and have characterized the mutational patterns by direct observation of 731 meioses. The data show that large alleles (>/=40 CAG repeats) are generally most common in Asian populations, less common in populations of European ancestry, and least common among Africans. We have observed a high intergenerational instability (46. 3%+/-5.1%) of the large alleles. Although the mutation rate is not dependent on parental sex, paternal transmissions have predominantly resulted in contractions, whereas maternal transmissions have yielded expansions. Within this class of large alleles, the mutation rate increases concomitantly with increasing allele size, but the magnitude of repeat size change does not depend on the size of the progenitor allele. Sequencing of specific alleles reveals that the intermediate-sized alleles (30-40 repeats) have CAT/CAC interruptions within the CAG-repeat array. These results indicate that expansion and instability of trinucleotide repeats are not exclusively disease-associated phenomena. The implications of the existence of massively expanded alleles in the general populations are not yet understood.  相似文献   

10.
A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in approximately 70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r2 = .19). The size of the CAG repeat influenced larger intergenerational expansions (> 7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (> 7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P < 10(-7)), while offspring of affected mothers are more likely to show no change (P = .01) or contractions in CAG size (P = .002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability.  相似文献   

11.
To identify various subtypes of spinocerebellar ataxias (SCAs) among 57 unrelated individuals clinically diagnosed as ataxia patients we analysed the SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci for expansion of CAG repeats. We detected CAG repeat expansion in 6 patients (10.5%) at the SCA1 locus. Ten of the 57 patients (17.5%) had CAG repeat expansion at the SCA2 locus, while four had CAG expansion at the SCA3/MJD locus (7%). At the SCA6 locus there was a single patient (1.8%) with 21 CAG repeats. We have not detected any patient with expansion in the SCA7 and DRPLA loci. To test whether the frequencies of the large normal alleles in SCA1, SCA2 and SCA6 loci can reflect some light on prevalence of the subtypes of SCAs we studied the CAG repeat variation in these loci in nine ethnic sub-populations of eastern India from which the patients originated. We report here that the frequency of large normal alleles (>31 CAG repeats) in SCA1 locus to be 0.211 of 394 chromosomes studied. We also report that the frequency of large normal alleles (>22 CAG repeats) at the SCA2 locus is 0.038 while at the SCA6 locus frequency of large normal alleles (>13 repeats) is 0.032. We discussed our data in light of the distribution of normal alleles and prevalence of SCAs in the Japanese and white populations.  相似文献   

12.
Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) is a progressive neurodegenerative disorder caused by a CAG expansion in the spinocerebellar ataxia 7 (SCA7) gene. Here, we describe the genomic organisation of the human SCA7 gene. The exon-intron boundaries were identified by sequencing plasmid subclones of a P1 artificial chromosome (PAC) clone containing the entire SCA7 gene. We found 13 exons, ranging in size from 69 to 979 bp, with all exon-intron boundaries following the GT-AG rule. The ATG initiation codon at position 554 of the cDNA occurs in exon 3 at position 12 and the coding region extends to the first five codons of exon 13, with the CAG repeat being located in exon 3 starting at codon 30. The intron sizes were determined by long-distance polymerase chain reaction with primers from neighbouring exons and by restriction mapping of the SCA7 PAC clone. The introns varied in size from 233 bp to about 40 kb, resulting in an overall size estimate for the SCA7 gene of 140 kb. Sequence analysis of intron 7 (491 bp) revealed a polymorphic GT/AC repeat, a useful intragenic marker for SCA7 in segregation studies.  相似文献   

13.
《Genetika》2004,40(8):1123-1130
Direct molecular genetic testing carried out in 59 Huntington's disease patients belonging to 46 families from Bashkortostan revealed the (CAG)n repeat expansion in exon 1 of the IT15 gene in 57 of them. By use of this analysis the disease status was not confirmed in two patients with atypical form of the disease and negative family history. The (CAG)n repeat expansion was identified in 27 out of 127 asymptomatic at-risk individuals. Analysis of the mutant (CAG)n allele inheritance demonstrated extremely high instability and high mutation rate predominantly leading to the appearance of the alleles with increasing number of (CAG)n repeats in subsequent generations. The instability was mostly observed in cases of paternal transmission. Almost complete linkage disequilibrium between the (CCG)7 mutant alleles and the del2642 deletion was demonstrated. Three major haplotypes revealed, (CCG)7/del-, (CCG)7/del+, and (CCG)10/del-, implied the existence of at least three sources of the origin of Huntington's disease in Bashkortostan. The identified haplotype frequency distribution patterns displayed similarities with those in European populations. The contribution of a number of genetic factors to the age of onset of Huntington's disease was analyzed.  相似文献   

14.
谭建强  汪萍  胡启平  李松峰  舒伟  马军  方玲  华荣  丁晔  袁志刚 《遗传》2009,31(6):605-610
为探讨广西地区脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)患者各种亚型类型特点及分布状况, 应用聚合酶链反应(Polymerase chain reaction, PCR)、毛细管电泳(Capillary electrophoresis, CE)片段分析等技术检测分析遗传性共济失调患者的SCA1、SCA2、SCA3/MJD、SCA6、SCA7和SCA12 (CAG)n突变。在6个SCA家系共检出21例患者和19例症状前患者均为SCA3/MJD突变, CAG重复数分别为59~70次和60~73次。未检测到SCA1、SCA2、SCA6、SCA7和SCA12(CAG)n突变。研究表明, 广西地区的SCA病人主要为SCA3/MJD型, 患者的CAG重复数低于过去的报道。  相似文献   

15.
Dentatorubral and pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder with expansion of trinucleotide CAG repeats in the coding region of the gene. Expansion of the repeat tract beyond the normal range produces gene products with extended polyglutamine tracts. In this study, we analyzed the distribution of the CAG repeats in the DRPLA alleles in a normal Taiwanese population. We observed 15 different alleles and found that the range of the CAG repeat number was from 7-21. The most frequent allele contained 15 CAG repeats that represented 20% of the total analyzed alleles, followed by the 17 repeats (15.8%). The heterozygosity rate of this locus was 88%. Twelve parents-to-children transmissions of the DRPLA alleles in a Machado-Joseph disease family appeared to be normal without any alteration of the CAG repeat numbers. Phenotypes of DRPLA overlapped those of autosomal dominant cerebellar ataxia (ADCA). In order to identify DRPLA patients in Taiwan, we screened six autosomal dominant cerebellar ataxia patients without expansion in known spinocerebellar ataxia genes. All six patients had the repeat numbers within the normal range; thus, the possibility of DRPLA could be excluded.  相似文献   

16.
Autosomal dominant cerebellar ataxia is a group of clinically and genetically heterogeneous disorders. We carried out genomewide linkage analysis in 15 families with autosomal dominant pure cerebellar ataxia (ADPCA). Evidence for linkage to chromosome 19p markers was found in nine families, and combined multipoint analysis refined the candidate region to a 13.3-cM interval in 19p13.1-p13.2. The remaining six families were excluded for this region. Analysis of CAG-repeat expansion in the alpha1A-voltage-dependent calcium channel (CACNL1A4) gene lying in 19p13.1, recently identified among 8 small American kindreds with ADPCA (spinocerebellar ataxia type 6 [SCA6]), revealed that 8 of the 15 families studied had similar, very small expansion in this gene: all affected individuals had larger alleles (range of CAG repeats 21-25), compared with alleles observed in neurologically normal Japanese (range 5-20 repeats). Inverse correlation between the CAG-repeat number and the age at onset was found in affected individuals with expansion. The number of CAG repeats in expanded chromosomes was completely stable within each family, which was consistent with the fact that anticipation was not statistically proved in the SCA6 families that we studied. We conclude that more than half of Japanese cases of ADPCA map to 19p13.1-p13.2 and are strongly associated with the mild CAG expansion in the SCA6/CACNL1A4 gene.  相似文献   

17.
脊髓小脑共济失调第7型的临床特征及基因突变研究   总被引:1,自引:0,他引:1  
殷鑫浈  张宝荣  吴鼎文  田均  张灏 《遗传》2007,29(6):688-692
对一脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)家系的患者进行临床特征及相关基因突变研究。对该家系进行详细的病史采集, 并对患者行视力、眼底血管造影、眼底拍照、视觉诱发电位、视网膜电图以及头颅MRI等辅助检查; 采用聚合酶链反应分别扩增SCA1、SCA2、SCA3、SCA6、SCA7、SCA17及DRPLA基因的CAG重复序列, 用8%变性聚丙烯酰胺凝胶电泳及直接测序进行突变分析。结果2名患者主要表现为小脑性共济失调、视力下降、眼底视网膜色素变性、小脑和脑干萎缩; 并存在SCA7基因的突变, 而未发现SCA1、SCA2、SCA3、SCA6、SCA17及DRPLA基因突变。说明该家系为SCA7突变家系, SCA7基因中CAG三核苷酸重复拷贝数的异常扩增是其致病原因。  相似文献   

18.
19.
Spinocerebellar ataxias (SCAs) are caused by expansion of (CAG)n triplet repeats. These repeats occur as polymorphic forms in general population; however, beyond a threshold size they become pathogenic. The sizes and distributions of repeats at the SCA1, SCA2, SCA3, SCA7 and DRPLA loci were assessed by molecular analysis of 124 unrelated ataxia patients and 44 controls, and the association of larger normal (LN) alleles with disease prevalence was evaluated. Triplet repeat expansions in the disease range were detected in 8% (10/124) of the cases, with the majority having expansion at the SCA1 locus. Normal allele ranges in the cohort studied were similar to the Caucasian and North Indian populations but differed from the Korean and Japanese populations at various loci. The percentage of individuals with LN alleles at the SCA1 and SCA2 loci was higher than reported in Indians, Japanese and Caucasians. LN alleles showed a good correlation with the incidence of SCA1, indicating that SCA1 is the most prevalent ataxia in our population. The majority of cases with clinical symptoms of SCA could not be diagnosed by established CAG repeat criteria, suggesting that there may be an alternative basis for disease pathogenesis: (i) Repeats lower than the normal range may also result in abnormal phenotypes (ii) LN alleles at different loci in the same individual may contribute to symptoms (iii) Exogenous factors may play a role in triggering disease symptoms in individuals with LN alleles (iv) Triplet repeats may reach the disease range in the brain but not in the blood.  相似文献   

20.
Prior studies describing the relationship between CAG size and the age at onset of Huntington disease (HD) have focused on affected persons. To further define the relationship between CAG repeat size and age at onset of HD, we now have analyzed a large cohort of affected and asymptomatic at-risk persons with CAG expansion. This cohort numbered 1,049 persons, including 321 at-risk and 728 affected individuals with a CAG size of 29-121 repeats. Kaplan-Meier analysis has provided curves for determining the likelihood of onset at a given age, for each CAG repeat length in the 39-50 range. The curves were significantly different (P < .0005), with relatively narrow 95% confidence intervals (95% CI) (+/-10%). Penetrance of the mutation for HD also was examined. Although complete penetrance of HD was observed for CAG sizes of > or = 42, only a proportion of those with a CAG repeat length of 36-41 showed signs or symptoms of HD within a normal life span. These data provide information concerning the likelihood of being affected, by a specific age, with a particular CAG size, and they may be useful in predictive-testing programs and for the design of clinical trials for persons at increased risk for HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号