首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
-Syntrophin is a component of the dystrophin glycoprotein complex (DGC). It is firmly attached to the dystrophin cytoskeleton via a unique COOH-terminal domain and is associated indirectly with -dystroglycan, which binds to extracellular matrix laminin. Syntrophin contains two pleckstrin homology (PH) domains and one PDZ domain. Because PH domains of other proteins are known to bind the -subunits of the heterotrimeric G proteins, whether this is also a property of syntrophin was investigated. Isolated syntrophin from rabbit skeletal muscle binds bovine brain G-subunits in gel blot overlay experiments. Laminin-1-Sepharose or specific antibodies against syntrophin, - and -dystroglycan, or dystrophin precipitate a complex with G from crude skeletal muscle microsomes. Bacterially expressed syntrophin fusion proteins and truncation mutants allowed mapping of G binding to syntrophin's PDZ domain; this is a novel function for PDZ domains. When laminin-1 is bound, maximal binding of Gs and G occurs and active Gs, measured as GTP-35S bound, decreases. Because intracellular Ca2+ is elevated in Duchenne muscular dystrophy and Gs is known to activate the dihydropyridine receptor Ca2+ channel, whether laminin also altered intracellular Ca2+ was investigated. Laminin-1 decreases active (GTP-S-bound) Gs, and the Ca2+ channel is inhibited by laminin-1. The laminin 1-chain globular domains 4 and 5 region, the region bound by DGC -dystroglycan, is sufficient to cause an effect, and an antibody that specifically blocks laminin binding to -dystroglycan inhibits G binding by syntrophin in C2C12 myotubes. These observations suggest that DGC is a matrix laminin, G protein-coupled receptor. Duchenne muscular dystrophy; protein G -subunit; pleckstrin homology domain  相似文献   

2.
Wound healing involves both local cells and inflammatory cells. Alkali burn of ocular surface tissue is a serious clinical problem often leading to permanent visual impairment resulting from ulceration, scarring and neovascularization during healing. Behaviors of corneal cells and inflammatory cells are orchestrated by growth factor signaling networks that have not been fully uncovered. Here we showed that adenoviral gene introduction of peroxisome proliferator-activated receptor- (PPAR) inhibits activation of ocular fibroblasts and macrophages in vitro and also induced anti-inflammatory and anti-fibrogenic responses in an alkali-burned mouse cornea. PPAR overexpression suppressed upregulation of inflammation/scarring-related growth factors and matrix metalloproteinases (MMPs) in macrophages. It also suppressed expression of such growth factors and collagen I2 and myofibroblast generation upon exposure to TGF1. Exogenous PPAR did not alter phosphorylation of Smad2, but inhibited its nuclear translocation. PPAR overexpression enhanced proliferation of corneal epithelial cells, but not of fibroblasts in vitro. Epithelial cell expression of MMP-2/-9 and TGF1 and its migration were suppressed by PPAR overexpression. In vivo experiments showed that PPAR gene introduction suppressed monocytes/macrophages invasion and suppressed the generation of myofibroblasts, as well as upregulation of cytokines/growth factors and MMPs in a healing cornea. In vivo re-epitheliazation with basement membrane reconstruction in the healing, burned, cornea was accelerated by PPAR-Ad expression, although PPAR overexpression was considered to be unfavorable for cell migration. Together, these data suggest that overexpression of PPAR may represent an effective new strategy for treatment of ocular surface burns. peroxisome proliferator-activated receptor-; gene therapy; macrophage; fibroblast; Smad  相似文献   

3.
We studied the functions of -subunits of Gi/o protein using the Xenopus oocyte expression system. Isoproterenol (ISO) elicited cAMP production and slowly activating Cl currents in oocytes expressing 2-adrenoceptor and the protein kinase A-dependent Cl channel encoded by the cystic fibrosis transmembrane conductance regulator (CFTR) gene. 5-Hydroxytryptamine (5-HT), [D-Ala2, D-Leu5]-enkephalin (DADLE), and baclofen enhanced ISO-induced cAMP levels and CFTR currents in oocytes expressing 2-adrenoceptor-CFTR and 5-HT1A receptor (5-HT1AR), -opioid receptor, or GABAB receptor, respectively. 5-HT also enhanced pituitary adenylate cyclase activating peptide (PACAP) 38-induced cAMP levels and CFTR currents in oocytes expressing PACAP receptor, CFTR and 5-HT1AR. The 5-HT-induced enhancement of Gs-coupled receptor-mediated currents was abrogated by pretreatment with pertussis toxin (PTX) and coexpression of G transducin (Gt). The 5-HT-induced enhancement was further augmented by coexpression of the G-activated form of adenylate cyclase (AC) type II but not AC type III. Thus -subunits of Gi/o protein contribute to the enhancement of Gs-coupled receptor-mediated responses. 5-HT and DADLE did not elicit any currents in oocytes expressing 5-HT1AR or -opioid receptor alone. They elicited Ca2+-activated Cl currents in oocytes coexpressing these receptors with the G-activated form of phospholipase C (PLC)-2 but not with PLC-1. These currents were inhibited by pretreatment with PTX and coexpression of Gt, suggesting that -subunits of Gi/o protein activate PLC-2 and then cause intracellular Ca2+ mobilization. Our results indicate that -subunits of Gi/o protein participate in diverse intracellular signals, enhancement of Gs-coupled receptor-mediated responses, and intracellular Ca2+ mobilization. G protein-coupled receptor; cystic fibrosis transmembrane conductance regulator gene; cross talk; electrophysiology  相似文献   

4.
Although 17-estradiol (E2) administration following trauma-hemorrhage prevents the suppression in splenocyte cytokine production, it remains unknown whether the salutary effects of 17-estradiol are mediated via estrogen receptor (ER)- or ER-. Moreover, it is unknown which signaling pathways are involved in 17-estradiol's salutary effects. Utilizing an ER-- or ER--specific agonist, we examined the role of ER- and ER- in E2-mediated restoration of T-cell cytokine production following trauma-hemorrhage. Moreover, since MAPK, NF-B, and activator protein (AP)-1 are known to regulate T-cell cytokine production, we also examined the activation of MAPK, NF-B, and AP-1. Male rats underwent trauma-hemorrhage (mean arterial pressure 40 mmHg for 90 min) and fluid resuscitation. ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic T cells were isolated, and their IL-2 and IFN- production and MAPK, NF-B, and AP-1 activation were measured. T-cell IL-2 and IFN- production was decreased following trauma-hemorrhage, and this was accompanied with a decrease in T-cell MAPK, NF-B, and AP-1 activation. PPT or 17-estradiol administration following trauma-hemorrhage normalized those parameters, while DPN administration had no effect. Since PPT, but not DPN, administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the T-cell suppression, it appears that ER- plays a predominant role in mediating the salutary effects of 17-estradiol on T cells following trauma-hemorrhage, and that such effects are likely mediated via normalization of MAPK, NF-B, and AP-1 signaling pathways. shock; MAPK; NF-B; activator protein-1; propyl pyrazole triol; diarylpropionitrile  相似文献   

5.
Activation of NF-B requires the phosphorylation and degradation of its associated inhibitory proteins, IB. Previously, we reported that the extracellular signal-regulated kinase (ERK) is required for IL-1 to induce persistent activation of NF-B in cultured rat vascular smooth muscle cells (VSMCs). The present study examined the mechanism by which the ERK signaling cascade modulates the duration of NF-B activation. In cultured rat VSMCs, IL-1 activated ERK and induced degradation of both IB and IB, which was associated with nuclear translocation of both ribosomal S6 kinase (RSK)1 and NF-B p65. RSK1, a downstream kinase of ERK, was associated with an IB/NF-B complex, which was independent of the phosphorylation status of RSK1. Treatment of VSMCs with IL-1 decreased IB in the RSK1/IB/NF-B complex, an effect that was attenuated by inhibition of ERK activation. Knockdown of RSK1 by small interference RNA attenuated the IL-1-induced IB decrease without influencing ether ERK phosphorylation or the earlier IB degradation. By using recombinant wild-type and mutant IB proteins, both active ERK2 and RSK1 were found to directly phosphorylate IB, but only active RSK1 phosphorylated IB on Ser19 and Ser23, two sites known to mediate the subsequent ubiquitination and degradation. In conclusion, in the ERK signaling cascade, RSK1 is a key component that directly phosphorylates IB and contributes to the persistent activation of NF-B by IL-1. extracellular signal-regulated kinase; in vitro phosphorylation assay; recombinant proteins; small interference RNA; vascular smooth muscle cell  相似文献   

6.
Oxidative cells increase mitochondrial mass in response to stimuli such as changes in energy demand or cellular differentiation. This plasticity enables the cell to adapt dynamically to achieve the necessary oxidative capacity. However, the pathways involved in triggering mitochondrial biogenesis are poorly defined. The present study examines the impact of altering energy provision on mitochondrial biogenesis in muscle cells. C2C12 myoblasts were chronically treated with supraphysiological levels of sodium pyruvate for 72 h. Treated cells exhibited increased mitochondrial protein expression, basal respiratory rate, and maximal oxidative capacity. The increase in mitochondrial biogenesis was independent of increases in peroxisomal proliferator activator receptor- coactivator-1 (PGC-1) and PGC-1 mRNA expression. To further assess whether PGC-1 expression was necessary for pyruvate action, cells were infected with adenovirus containing shRNA for PGC-1 before treatment with pyruvate. Despite a 70% reduction in PGC-1 mRNA, the effect of pyruvate was preserved. Furthermore, pyruvate induced mitochondrial biogenesis in primary myoblasts from PGC-1 null mice. These data suggest that regulation of mitochondrial biogenesis by pyruvate in myoblasts is independent of PGC-1, suggesting the existence of a novel energy-sensing pathway regulating oxidative capacity. oxidative metabolism; peroxisomal proliferator activator receptor- coactivator-1, mitochondria; muscle  相似文献   

7.
The involvement of PKC, the isoforms of which are categorized into three subtypes: conventional (, I, II, and ), novel [, , , and µ (also known as PKD),], and atypical ( and /), in the regulation of endothelial monolayer integrity is well documented. However, isoform activity varies among different cell types. Our goal was to reveal isoform-specific PKC activity in the microvascular endothelium in response to phorbol 12-myristate 13-acetate (PMA) and diacylglycerol (DAG). Isoform activity was demonstrated by cytosol-to-membrane translocation after PMA treatment and phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein after PMA and DAG treatment. Specific isoforms were inhibited by using both antisense oligonucleotides and pharmacological agents. The data showed partial cytosol-to-membrane translocation of isoforms , I, and and complete translocation of PKC and PKD in response to PMA. Furthermore, antisense treatment and pharmacological studies indicated that the novel isoform PKC and PKD are both required for PMA- and DAG-induced MARCKS phosphorylation and hyperpermeability in pulmonary microvascular endothelial cells, whereas isoforms , I, and were dispensable with regard to these same phenomena. signal transduction; permeability; myristolated alanine-rich C kinase substrate; microvasculature; pulmonary endothelium  相似文献   

8.
While there is circumstantial evidence to suggest a requirement for phospholipase C-1 (PLC-1) in actin reorganization and cell migration, few studies have examined the direct mechanisms that link regulators of the actin cytoskeleton with this crucial signaling molecule. This study was aimed to examine the role that villin, an epithelial cell-specific actin-binding protein, and its ligand PLC-1 play in migration in intestinal and renal epithelial cell lines that endogenously or ectopically express human villin. Basal as well as epidermal growth factor (EGF)-stimulated cell migration was accompanied by tyrosine phosphorylation of villin and its association with PLC-1. Inhibition of villin phosphorylation prevented villin-PLC-1 complex formation as well as villin-induced cell migration. The absolute requirement for PLC-1 in villin-induced cell migration was demonstrated by measuring cell motility in PLC-1–/– cells and by downregulation of endogenous PLC-1. EGF-stimulated direct interaction of villin with the Src homology domain 2 domain of PLC-1 at the plasma membrane was demonstrated in living cells by using fluorescence resonance energy transfer. These results demonstrate that villin provides an important link between the activation of phosphoinositide signal transduction pathway and epithelial cell migration. fluorescence resonance energy transfer; actin  相似文献   

9.
Several related isoforms of p38MAPK have been identified and cloned in many species. Although they all contain the dual phosphorylation motif TGY, the expression of these isoforms is not ubiquitous. p38 and -2 are ubiquitously expressed, whereas p38 and - appear to have more restricted expression. Because there is evidence for selective activation by upstream kinases and selective preference for downstream substrates, the functions of these conserved proteins is still incompletely understood. We have demonstrated that the renal mesangial cell expresses the mRNA for all the isoforms of p38MAPK, with p38 mRNA expressed at the highest level, followed by p38 and the lowest levels of expression by p382 and -. To determine the functional effects of these proteins on interleukin (IL)-1-induced inducible nitric oxide synthase (iNOS) expression, we transduced TAT-p38 chimeric proteins into renal mesangial cells and assessed the effects of wild-type and mutant p38 isoforms on ligand induced iNOS expression. We show that whereas p38 and - had minimal effects on iNOS expression, p38 and -2 significantly altered its expression. p38 mutant and p382 wild-type dose dependently inhibited IL-1-induced iNOS expression. These data suggest that p38 and 2 have reciprocal effects on iNOS expression in the mesangial cell, and these observations may have important consequences for the development of selective inhibitors targeting the p38MAPK family of proteins. TAT proteins; p38 MAPK; inducible nitric oxide synthase; mesangial cell; interleukin-1  相似文献   

10.
Airway goblet cell mucin secretion is controlled by agonist activation of P2Y2 purinoceptors, acting through Gq/PLC, inositol-1,4,5-trisphosphate (IP3), diacylglycerol, Ca2+ and protein kinase C (PKC). Previously, we showed that SPOC1 cells express cPKC, nPKC, nPKC, and nPKC; of these, only nPKC translocated to the membrane in correlation with mucin secretion (Abdullah LH, Bundy JT, Ehre C, Davis CW. Am J Physiol Lung Physiol 285: L149–L160, 2003). We have verified these results and pursued the identity of the PKC effector isoform by testing the effects of altered PKC expression on regulated mucin release using SPOC1 cell and mouse models. SPOC1 cells overexpressing cPKC, nPKC, and nPKC had the same levels of ATPS- and phorbol-1,2-myristate-13-acetate (PMA)-stimulated mucin secretion as the levels in empty retroviral vector expressing cells. Secretagogue-induced mucin secretion was elevated only in cells overexpressing nPKC (14.6 and 23.5%, for ATPS and PMA). Similarly, only SPOC1 cells infected with a kinase-deficient nPKC exhibited the expected diminution of stimulated mucin secretion, relative to wild-type (WT) isoform overexpression. ATPS-stimulated mucin secretion from isolated, perfused mouse tracheas was diminished in P2Y2-R null mice by 82% relative to WT mice, demonstrating the utility of mouse models in studies of regulated mucin secretion. Littermate WT and nPKC knockout (KO) mice had nearly identical levels of stimulated mucin secretion, whereas mucin release was nearly abolished in nPKC KO mice relative to its WT littermates. We conclude that nPKC is the effector isoform downstream of P2Y2-R activation in the goblet cell secretory response. The translocation of nPKC observed in activated cells is likely not related to mucin secretion but to some other aspect of goblet cell biology. protein kinase C; mucins; goblet cells; exocytosis; airways; epithelium; lung  相似文献   

11.
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IB kinase (IKK)/nuclear factor-B (NF-B) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of 51 integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C- inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca2+ pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca2+ concentration ([Ca2+]i) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca2+]i rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC- activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC--PKC-IKK-NF-B signaling cascade. Another crucial factor, [Ca2+]i increase, may at least be required to activate PKC needed for NF-B activation. nuclear factor-B; phosphatidylinositol 3-kinase; phospholipase C-; protein kinase C; intracellular Ca2+ concentration  相似文献   

12.
We have examined the effects of the cannabinoid anandamide (AEA) and its stable analog, methanandamide (methAEA), on large-conductance, Ca2+-activated K+ (BK) channels using human embryonic kidney (HEK)-293 cells, in which the -subunit of the BK channel (BK-), both - and 1-subunits (BK-1), or both - and 4-subunits (BK-4) were heterologously expressed. In a whole cell voltage-clamp configuration, each cannabinoid activated BK-1 within a similar concentration range. Because methAEA could potentiate BK-, BK-1, and BK-4 with similar efficacy, the -subunits may not be involved at the site of action for cannabinoids. Under cell-attached patch-clamp conditions, application of methAEA to the bathing solution increased BK channel activity; however, methAEA did not alter channel activity in the excised inside-out patch mode even when ATP was present on the cytoplasmic side of the membrane. Application of methAEA to HEK-BK- and HEK-BK-1 did not change intracellular Ca2+ concentration. Moreover, methAEA-induced potentiation of BK channel currents was not affected by pretreatment with a CB1 antagonist (AM251), modulators of G proteins (cholera and pertussis toxins) or by application of a selective CB2 agonist (JWH133). Inhibitors of CaM, PKG, and MAPKs (W7, KT5823, and PD-98059) did not affect the potentiation. Application of methAEA to mouse aortic myocytes significantly increased BK channel currents. This study provides the first direct evidence that unknown factors in the cytoplasm mediate the ability of endogenous cannabinoids to activate BK channel currents. Cannabinoids may be hyperpolarizing factors in cells, such as arterial myocytes, in which BK channels are highly expressed. anandamide; channel opener  相似文献   

13.
We investigated the involvement of PKC- in apical actin remodeling in carbachol-stimulated exocytosis in reconstituted rabbit lacrimal acinar cells. Lacrimal acinar PKC- cosedimented with actin filaments in an actin filament binding assay. Stimulation of acini with carbachol (100 µM, 2–15 min) significantly (P 0.05) increased PKC- recovery with actin filaments in two distinct biochemical assays, and confocal fluorescence microscopy showed a significant increase in PKC- association with apical actin in stimulated acini as evidenced by quantitative colocalization analysis. Overexpression of dominant-negative (DN) PKC- in lacrimal acini with replication-defective adenovirus (Ad) resulted in profound alterations in apical and basolateral actin filaments while significantly inhibiting carbachol-stimulated secretion of bulk protein and -hexosaminidase. The chemical inhibitor GF-109203X (10 µM, 3 h), which inhibits PKC-, -, -, and -, also elicited more potent inhibition of carbachol-stimulated secretion relative to Gö-6976 (10 µM, 3 h), which inhibits only PKC- and -. Transduction of lacrimal acini with Ad encoding syncollin-green fluorescent protein (GFP) resulted in labeling of secretory vesicles that were discharged in response to carbachol stimulation, whereas cotransduction of acini with Ad-DN-PKC- significantly inhibited carbachol-stimulated release of syncollin-GFP. Carbachol also increased the recovery of secretory component in culture medium, whereas Ad-DN-PKC- transduction suppressed its carbachol-stimulated release. We propose that DN-PKC- alters lacrimal acinar apical actin remodeling, leading to inhibition of stimulated exocytosis and transcytosis. lacrimal gland; acinar epithelial cell; exocytosis; polymeric immunoglobulin A receptor  相似文献   

14.
Although 17-estradiol administration following trauma-hemorrhage prevents the suppression in splenic macrophage cytokine production, it remains unknown whether the salutary effects are mediated via estrogen receptor (ER)- or ER- and which signaling pathways are involved in such 17-estradiol effects. Utilizing ER-- or ER--specific agonists, this study examined the role of ER- and ER- in 17-estradiol-mediated restoration of macrophage cytokine production following trauma-hemorrhage. In addition, since MAPK and NF-B are known to regulate macrophage cytokine production, we also examined the activation of those signaling molecules. Male rats underwent trauma-hemorrhage (mean arterial pressure of 40 mmHg for 90 min) and fluid resuscitation. The ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), the ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic macrophages were isolated, and their IL-6 and TNF- production and activation of MAPK and NF-B were measured. Macrophage IL-6 and TNF- production and MAPK activation were decreased, whereas NF-B activity was increased, following trauma-hemorrhage. PPT or 17-estradiol administration after trauma-hemorrhage normalized those parameters. DPN administration, on the other hand, did not normalize the above parameters. Since PPT but not DPN administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the suppression in macrophage cytokine production, it appears that ER- plays the predominant role in mediating the salutary effects of 17-estradiol on macrophage cytokine production following trauma-hemorrhage and that such effects are likely mediated via normalization of MAPK but not NF-B signaling pathways. shock; mitogen-activated protein kinase; nuclear factor-B; propyl pyrazole triol; diarylpropionitrile  相似文献   

15.
The purpose of this study was to determine whether there is a correlation between phosphorylation and activity of the epithelial sodium channel (ENaC). The three subunits that form the channel were immunoprecipitated from A6 cells by using specific polyclonal antibodies after labeling cells with 35S or 32P. When immune complexes were resolved on SDS-PAGE, the -subunit migrated at 85 and 65 kDa, the -subunit at 115 and 100 kDa, and the -subunit at 90 kDa. In the resting state all three subunits were phosphorylated. The -subunit was phosphorylated only in the 65-kDa band, suggesting that the posttranslational modification that gives rise to the rapidly migrating form of is a requirement for phosphorylation. Stimulation with 100 nM insulin for 30 min increased phosphorylation of -, -, and -subunits approximately twofold. Exposure to 1 µM aldosterone for 16 h increased protein abundance and phosphorylation proportionately in the three subunits. When insulin was applied to cells pretreated with aldosterone, phosphorylation was also increased approximately twofold, but the total amount of phosphorylated substrate was larger than in control conditions because of the action of aldosterone. This result might explain the synergistic increase in sodium transport under the same conditions. The protein kinase C inhibitor chelerythrine abolished insulin effects and decreased sodium transport and subunit phosphorylation. Together, our findings suggest that ENaC activity is controlled by subunit phosphorylation in cells that endogenously express the channel and the machinery for hormonal stimulation of sodium transport. epithelial sodium channel; aldosterone; sodium transport  相似文献   

16.
The polytopic membrane protein presenilin 1 (PS1) is a component of the -secretase complex that is responsible for the intramembranous cleavage of several type I transmembrane proteins, including the -amyloid precursor protein (APP). Mutations of PS1, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer’s disease. PS1 contains 10 hydrophobic regions (HRs) sufficiently long to be -helical membrane spanning segments. Most topology models for PS1 place its COOH terminal 40 amino acids, which include HR 10, in the cytosolic space. However, several recent observations suggest that HR 10 may be integrated into the membrane and involved in the interaction between PS1 and APP. We have applied three independent methodologies to investigate the location of HR 10 and the extreme COOH terminus of PS1. The results from these methods indicate that HR 10 spans the membrane and that the COOH terminal amino acids of PS1 lie in the extracytoplasmic space. Alzheimer’s disease; -secretase; -amyloid; intramembranous protease; transmembrane topology  相似文献   

17.
Integrin mechanotransduction is a ubiquitous biological process. Mechanical forces are transduced transmembranously by an integrin's ligand-bound extracellular domain through its -subunit's cytoplasmic domain connected to the cytoskeleton. This often culminates in the activation of tyrosine kinases directing cell responses. The delicate balance between hemostasis and thrombosis requires exquisitely fine-tuned integrin function, and balance is maintained in vivo despite that the major platelet integrin IIb3 is continuously subjected to frictional or shearing forces generated by laminar blood flow. To test the hypothesis that platelet function is regulated by the direct effects of mechanical forces on IIb3, we examined IIb3/cytoskeletal interactions in human platelets exposed to shear stress in a cone-plate viscometer. We observed that -actinin, myosin heavy chain, and Syk coimmunoprecipitate with IIb3 in resting platelets and that 120 dyn/cm2 shear stress leads to their disassociation from IIb3. Shear-induced disassociation of -actinin and myosin heavy chain from the 3 tail is unaffected by blocking von Willebrand factor (VWF) binding to glycoprotein (Gp) Ib-IX-V but abolished by blocking VWF binding to IIb3. Syk's disassociation from 3 is inhibited when VWF binding to either GpIb-IX-V or IIb3 is blocked. Shear stress-induced phosphorylation of SLP-76 and its association with tyrosine-phosphorylated adhesion and degranulation-promoting adapter protein are inhibited by blocking ligand binding to IIb3 but not by blocking ligand binding to GpIb-IX-V. Chinese hamster ovary cells expressing IIb3 with 3 truncated of its cytoskeletal binding domains demonstrate diminished shear-dependent adhesion and cohesion. These results support the hypothesis that shear stress directly modulates IIb3 function and suggest that shear-induced IIb3-mediated signaling contributes to the regulation of platelet aggregation by directing the release of constraining cytoskeletal elements from the 3-tail. platelets; mechanoreceptor; integrin; shear stress; signal transduction  相似文献   

18.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

19.
We showed previously that enteropathogenic Escherichia coli (EPEC) infection of intestinal epithelial cells induces inflammation by activating NF-B and upregulating IL-8 expression. We also reported that extracellular signal-regulated kinases (ERKs) participate in EPEC-induced NF-B activation but that other signaling molecules such as PKC may be involved. The aim of this study was to determine whether PKC is activated by EPEC and to investigate whether it also plays a role in EPEC-associated inflammation. EPEC infection induced the translocation of PKC from the cytosol to the membrane and its activation as determined by kinase activity assays. Inhibition of PKC by the pharmacological inhibitor rottlerin, the inhibitory myristoylated PKC pseudosubstrate (MYR-PKC-PS), or transient expression of a nonfunctional PKC significantly suppressed EPEC-induced IB phosphorylation. Although PKC can activate ERK, MYR-PKC-PS had no effect on EPEC-induced stimulation of this pathway, suggesting that they are independent events. PKC can regulate NF-B activation by interacting with and activating IB kinase (IKK). Coimmunoprecipitation studies showed that the association of PKC and IKK increased threefold 60 min after infection. Kinase activity assays using immunoprecipitated PKC-IKK complexes from infected intestinal epithelial cells and recombinant IB as a substrate showed a 2.5-fold increase in IB phosphorylation. PKC can also regulate NF-B by serine phosphorylation of the p65 subunit. Serine phosphorylation of p65 was increased after EPEC infection but could not be consistently attenuated by MYR-PKC-PS, suggesting that other signaling events may be involved in this particular arm of NF-B regulation. We speculate that EPEC infection of intestinal epithelial cells activates several signaling pathways including PKC and ERK that lead to NF-B activation, thus ensuring the proinflammatory response. inflammation; enteropathogenic Escherichia coli; nuclear factor-B; protein kinase C; IB kinase; extracellular signal-regulated kinase  相似文献   

20.
Protein kinase C (PKC) plays a critical role in diseases such as cancer, stroke, and cardiac ischemia and participates in a variety of signal transduction pathways including apoptosis, cell proliferation, and tumor suppression. Here, we demonstrate that PKC is proteolytically cleaved and translocated to the nucleus in a time-dependent manner on treatment of desferroxamine (DFO), a hypoxia-mimetic agent. Specific knockdown of the endogenous PKC by RNAi (sh-PKC) or expression of the kinase-dead (Lys376Arg) mutant of PKC (PKCKD) conferred modulation on the cellular adaptive responses to DFO treatment. Notably, the time-dependent accumulation of DFO-induced phosphorylation of Ser-139-H2AX (-H2AX), a hallmark for DNA damage, was altered by sh-PKC, and sh-PKC completely abrogated the activation of caspase-3 in DFO-treated cells. Expression of Lys376Arg-mutated PKC-enhanced green fluorescent protein (EGFP) appears to abrogate DFO/hypoxia-induced activation of endogenous PKC and caspase-3, suggesting that PKCKD-EGFP serves a dominant-negative function. Additionally, DFO treatment also led to the activation of Chk1, p53, and Akt, where DFO-induced activation of p53, Chk1, and Akt occurred in both PKC-dependent and -independent manners. In summary, these findings suggest that the activation of a PKC-mediated signaling network is one of the critical contributing factors involved in fine-tuning of the DNA damage response to DFO treatment. DNA damage; caspase-3; Akt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号